22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A High-Level Control Algorithm Based on sEMG Signalling for an Elbow Joint SMA Exoskeleton

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A high-level control algorithm capable of generating position and torque references from surface electromyography signals (sEMG) was designed. It was applied to a shape memory alloy (SMA)-actuated exoskeleton used in active rehabilitation therapies for elbow joints. The sEMG signals are filtered and normalized according to data collected online during the first seconds of a therapy session. The control algorithm uses the sEMG signals to promote active participation of patients during the therapy session. In order to generate the reference position pattern with good precision, the sEMG normalized signal is compared with a pressure sensor signal to detect the intention of each movement. The algorithm was tested in simulations and with healthy people for control of an elbow exoskeleton in flexion–extension movements. The results indicate that sEMG signals from elbow muscles, in combination with pressure sensors that measure arm–exoskeleton interaction, can be used as inputs for the control algorithm, which adapts the reference for exoskeleton movements according to a patient’s intention.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Filtering the surface EMG signal: Movement artifact and baseline noise contamination.

          The surface electromyographic (sEMG) signal that originates in the muscle is inevitably contaminated by various noise signals or artifacts that originate at the skin-electrode interface, in the electronics that amplifies the signals, and in external sources. Modern technology is substantially immune to some of these noises, but not to the baseline noise and the movement artifact noise. These noise sources have frequency spectra that contaminate the low-frequency part of the sEMG frequency spectrum. There are many factors which must be taken into consideration when determining the appropriate filter specifications to remove these artifacts; they include the muscle tested and type of contraction, the sensor configuration, and specific noise source. The band-pass determination is always a compromise between (a) reducing noise and artifact contamination, and (b) preserving the desired information from the sEMG signal. This study was designed to investigate the effects of mechanical perturbations and noise that are typically encountered during sEMG recordings in clinical and related applications. The analysis established the relationship between the attenuation rates of the movement artifact and the sEMG signal as a function of the filter band pass. When this relationship is combined with other considerations related to the informational content of the signal, the signal distortion of filters, and the kinds of artifacts evaluated in this study, a Butterworth filter with a corner frequency of 20 Hz and a slope of 12 dB/oct is recommended for general use. The results of this study are relevant to biomechanical and clinical applications where the measurements of body dynamics and kinematics may include artifact sources. Copyright 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An EMG-Based Control for an Upper-Limb Power-Assist Exoskeleton Robot.

            Many kinds of power-assist robots have been developed in order to assist self-rehabilitation and/or daily life motions of physically weak persons. Several kinds of control methods have been proposed to control the power-assist robots according to user's motion intention. In this paper, an electromyogram (EMG)-based impedance control method for an upper-limb power-assist exoskeleton robot is proposed to control the robot in accordance with the user's motion intention. The proposed method is simple, easy to design, humanlike, and adaptable to any user. A neurofuzzy matrix modifier is applied to make the controller adaptable to any users. Not only the characteristics of EMG signals but also the characteristics of human body are taken into account in the proposed method. The effectiveness of the proposed method was evaluated by the experiments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intention-based EMG control for powered exoskeletons.

              Electromyographical (EMG) signals have been frequently used to estimate human muscular torques. In the field of human-assistive robotics, these methods provide valuable information to provide effectively support to the user. However, their usability is strongly limited by the necessity of complex user-dependent and session-dependent calibration procedures, which confine their use to the laboratory environment. Nonetheless, an accurate estimate of muscle torque could be unnecessary to provide effective movement assistance to users. The natural ability of human central nervous system of adapting to external disturbances could compensate for a lower accuracy of the torque provided by the robot and maintain the movement accuracy unaltered, while the effort is reduced. In order to explore this possibility, in this paper we study the reaction of ten healthy subjects to the assistance provided through a proportional EMG control applied by an elbow powered exoskeleton. This system gives only a rough estimate of the user muscular torque but does not require any specific calibration. Experimental results clearly show that subjects adapt almost instantaneously to the assistance provided by the robot and can reduce their effort while keeping full control of the movement under different dynamic conditions (i.e., no alterations of movement accuracy are observed).
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                02 August 2018
                August 2018
                : 18
                : 8
                : 2522
                Affiliations
                Department of Systems Engineering and Automation, Carlos III University of Madrid, 28911 Leganés, Madrid, Spain; davserra@ 123456ing.uc3m.es (D.S.); moreno@ 123456ing.uc3m.es (L.M.); dblanco@ 123456ing.uc3m.es (D.B.)
                Author notes
                [* ]Correspondence: dcopaci@ 123456ing.uc3m.es ; Tel.: +34-91624-8812
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-3070-0994
                Article
                sensors-18-02522
                10.3390/s18082522
                6111717
                30072609
                b81c5cce-ed49-464f-af47-906324a5cae2
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 June 2018
                : 30 July 2018
                Categories
                Article

                Biomedical engineering
                exoskeleton,electromyographic (emg),control systems
                Biomedical engineering
                exoskeleton, electromyographic (emg), control systems

                Comments

                Comment on this article