60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      JNK-Interacting Protein 3 Mediates the Retrograde Transport of Activated c-Jun N-Terminal Kinase and Lysosomes

      research-article
      , *
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Retrograde axonal transport requires an intricate interaction between the dynein motor and its cargo. What mediates this interaction is largely unknown. Using forward genetics and a novel in vivo imaging approach, we identified JNK-interacting protein 3 (Jip3) as a direct mediator of dynein-based retrograde transport of activated (phosphorylated) c-Jun N-terminal Kinase (JNK) and lysosomes. Zebrafish jip3 mutants ( jip3 nl7 ) displayed large axon terminal swellings that contained high levels of activated JNK and lysosomes, but not other retrograde cargos such as late endosomes and autophagosomes. Using in vivo analysis of axonal transport, we demonstrated that the terminal accumulations of activated JNK and lysosomes were due to a decreased frequency of retrograde movement of these cargos in jip3 nl7 , whereas anterograde transport was largely unaffected. Through rescue experiments with Jip3 engineered to lack the JNK binding domain and exogenous expression of constitutively active JNK, we further showed that loss of Jip3–JNK interaction underlies deficits in pJNK retrograde transport, which subsequently caused axon terminal swellings but not lysosome accumulation. Lysosome accumulation, rather, resulted from loss of lysosome association with dynein light intermediate chain (dynein accessory protein) in jip3 nl7 , as demonstrated by our co-transport analyses. Thus, our results demonstrate that Jip3 is necessary for the retrograde transport of two distinct cargos, active JNK and lysosomes. Furthermore, our data provide strong evidence that Jip3 in fact serves as an adapter protein linking these cargos to dynein.

          Author Summary

          To form and maintain connections, neurons require the active transport of proteins and organelles between the neuronal cell body and axon terminals. Inhibition of this “axonal” transport has been linked to neurodegenerative diseases. Despite the importance of this process, to date there was no vertebrate model system where axonal transport could be studied in an intact animal. Our study introduces zebrafish as such a model and demonstrates its power for the analysis of axonal transport. We used this system to 1) initiate a genetic screen to find novel mediators of axonal transport; 2) develop in vivo imaging strategies to visualize axonal transport in real time in the intact animal; and 3) discover, using these methods, that JNK interacting protein 3 (Jip3) is required for the transport of two cargos, a kinase and lysosomes, from axon terminals to the cell body (retrograde transport). In the absence of Jip3, these cargos accumulate and axon terminals become dysmorphic, though the retrograde transport of other cargos is normal. Interestingly, abnormal localization of these cargos has been linked to axonal disease states, but our work is the first to identify a specific adapter protein necessary for their transport from axon terminals.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Kinesin superfamily motor proteins and intracellular transport.

          Intracellular transport is fundamental for cellular function, survival and morphogenesis. Kinesin superfamily proteins (also known as KIFs) are important molecular motors that directionally transport various cargos, including membranous organelles, protein complexes and mRNAs. The mechanisms by which different kinesins recognize and bind to specific cargos, as well as how kinesins unload cargo and determine the direction of transport, have now been identified. Furthermore, recent molecular genetic experiments have uncovered important and unexpected roles for kinesins in the regulation of such physiological processes as higher brain function, tumour suppression and developmental patterning. These findings open exciting new areas of kinesin research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate.

            We report the isolation and identification of a new mutation affecting pigment cell fate in the zebrafish neural crest. Homozygous nacre (nac(w2)) mutants lack melanophores throughout development but have increased numbers of iridophores. The non-crest-derived retinal pigment epithelium is normal, suggesting that the mutation does not affect pigment synthesis per se. Expression of early melanoblast markers is absent in nacre mutants and transplant experiments suggested a cell-autonomous function in melanophores. We show that nac(w2) is a mutation in a zebrafish gene encoding a basic helix-loop-helix/leucine zipper transcription factor related to microphthalmia (Mitf), a gene known to be required for development of eye and crest pigment cells in the mouse. Transient expression of the wild-type nacre gene restored melanophore development in nacre(-/-) embryos. Furthermore, misexpression of nacre induced the formation of ectopic melanized cells and caused defects in eye development in wild-type and mutant embryos. These results demonstrate that melanophore development in fish and mammals shares a dependence on the nacre/Mitf transcription factor, but that proper development of the retinal pigment epithelium in the fish is not nacre-dependent, suggesting an evolutionary divergence in the function of this gene.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulators of the cytoplasmic dynein motor.

              Eukaryotic cells use cytoskeletal motor proteins to transport many different intracellular cargos. Numerous kinesins and myosins have evolved to cope with the various transport needs that have arisen during eukaryotic evolution. Surprisingly, a single cytoplasmic dynein (a minus end-directed microtubule motor) carries out similarly diverse transport activities as the many different types of kinesin. How is dynein coupled to its wide range of cargos and how is it spatially and temporally regulated? The answer could lie in the several multifunctional adaptors, including dynactin, lissencephaly 1, nuclear distribution protein E (NUDE) and NUDE-like, Bicaudal D, Rod-ZW10-Zwilch and Spindly, that regulate dynein function and localization.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                February 2013
                February 2013
                28 February 2013
                : 9
                : 2
                : e1003303
                Affiliations
                [1]Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon, United States of America
                Fred Hutchinson Cancer Research Center, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CMD AVN. Performed the experiments: CMD AVN. Analyzed the data: CMD. Contributed reagents/materials/analysis tools: CMD AVN. Wrote the paper: CMD AVN.

                Article
                PGENETICS-D-12-01660
                10.1371/journal.pgen.1003303
                3585007
                23468645
                b802d24f-acbf-4fd4-a66b-54d78447087d
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 July 2012
                : 19 December 2012
                Page count
                Pages: 18
                Funding
                Funding was provided to AVN from the March of Dimes (Basil O'Connor Research Scholarship, 5-FY09-116; http://www.marchofdimes.com/research/researchgrants.html) and NICHD (1R01HD072844; http://www.nichd.nih.gov) and to CMD from the NICHD (5T32HD049309-05; http://www.nichd.nih.gov), NINDS (1F32NS071754-01A1; http://www.ninds.nih.gov), the Oregon Tax Check-off Program for Alzheimer's Research, and the Tartar Trust. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Developmental Biology
                Model Organisms
                Animal Models
                Zebrafish
                Neuroscience
                Developmental Neuroscience

                Genetics
                Genetics

                Comments

                Comment on this article