2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recent advancement in starch modification and its application as water treatment agent

      , , , ,
      Environmental Technology & Innovation
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references180

          • Record: found
          • Abstract: found
          • Article: not found

          Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy.

          Fourier transform infrared (FTIR) and Fourier transform Raman (FT-Raman) methods were used for rapid characterization and classification of selected irradiated starch samples. Biochemical changes due to irradiation were detected using the two vibrational spectroscopic techniques, and canonical variate analysis (CVA) was applied to the spectral data for discriminating starch samples based on the extent of irradiation. The O-H (3000-3600 cm(-1)) stretch, C-H (2800-3000 cm(-1)) stretch, the skeletal mode vibration of the glycosidic linkage (900-950 cm(-1)) in both Raman and infrared spectra, and the infrared band of water adsorbed in the amorphous parts of starches (1550-1750 cm(-1)) were employed in classification analysis of irradiated starches. Spectral data related to water adsorbed in the noncrystalline regions of starches provided a better classification of irradiated starches with 5 partial least-squares (PLS) factors in the multivariate model.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Natural organic matter removal by coagulation during drinking water treatment: a review.

            Natural organic matter (NOM) is found in all surface, ground and soil waters. An increase in the amount of NOM has been observed over the past 10-20 years in raw water supplies in several areas, which has a significant effect on drinking water treatment. The presence of NOM causes many problems in drinking water and drinking water treatment processes, including (i) negative effect on water quality by causing colour, taste and odor problems, (ii) increased coagulant and disinfectant doses (which in turn results in increased sludge volumes and production of harmful disinfection by-products), (iii) promoted biological growth in distribution system, and (iv) increased levels of complexed heavy metals and adsorbed organic pollutants. NOM can be removed from drinking water by several treatment options, of which the most common and economically feasible processes are considered to be coagulation and flocculation followed by sedimentation/flotation and sand filtration. Most of the NOM can be removed by coagulation, although, the hydrophobic fraction and high molar mass compounds of NOM are removed more efficiently than hydrophilic fraction and the low molar mass compounds. Thus, enhanced and/or optimized coagulation, as well as new process alternatives for the better removal of NOM by coagulation process has been suggested. In the present work, an overview of the recent research dealing with coagulation and flocculation in the removal of NOM from drinking water is presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Organic polyelectrolytes in water treatment.

              The use of polymers in the production of drinking water is reviewed, with emphasis on the nature of the impurities to be removed, the mechanisms of coagulation and flocculation, and the types of polymers commonly available. There is a focus on polymers for primary coagulation, their use as coagulant aids, in the recycling of filter backwash waters, and in sludge thickening. Practicalities of polymer use are discussed, with particular attention to polymer toxicity, and the presence of residual polymer in the final drinking water. The questions of polymer degradation and the formation of disinfection by-products are also addressed.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Environmental Technology & Innovation
                Environmental Technology & Innovation
                Elsevier BV
                23521864
                August 2021
                August 2021
                : 23
                : 101637
                Article
                10.1016/j.eti.2021.101637
                b7c86b5e-2fe8-4d2a-b6f5-12ee15c1f808
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article