2
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aromatase, testosterone, TMPRSS2: determinants of COVID-19 severity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Male sex has been identified as a risk factor for worse COVID-19 outcomes. This sex difference has been mostly attributed to the complex role of sex hormones. Cell surface entry of SARS-CoV-2 is mediated by the transmembrane protease serine 2 (TMPRSS2) which is under transcriptional regulation by androgens. P450 aromatase enzyme converts androgens to estrogens. This study measured concentrations of aromatase enzyme, testosterone, estradiol, and TMPRSS-2 in plasma of hospitalized COVID-19 patients to elucidate the dynamics of sex-linked disparity in COVID-19 and correlate them with disease severity and mortality.

          Methods

          In this prospective cohort study, a total of 265 patients (41% women), age 18 years and older, who had a positive COVID-19 PCR test and were hospitalized for COVID-19 at Memorial Hermann Hospital in Houston, (between May 2020 and May 2021) were enrolled in the study if met inclusion criteria. Plasma concentrations of Testosterone, aromatase, TMPRSS-2, and estradiol were measured by ELISA. COVID-19 patients were dichotomized based on disease severity into moderate-severe ( n = 146) or critical ( n = 119). Mann Whitney U and logistic regression were used to correlate the analytes with disease severity and mortality.

          Results

          TMPRSS2 (2.5 ± 0.31 vs. 1.73 ± 0.21 ng/mL, p < 0.01) and testosterone (1.2 ± 0.1 vs. 0.44 ± 0.12 ng/mL, p < 0.01) were significantly higher in men as compared to women with COVID-19 after adjusting for age in a multivariate model. There was no sex difference seen in the level of estradiol and aromatase in COVID-19 patients. TMPRSS2 and aromatase were higher, while testosterone was lower in patients with increased COVID-19 severity. They were independently associated with COVID-19 severity, after adjusting for several baseline risk factors in a multivariate logistic regression model. In terms of mortality, TMPRRS2 and aromatase levels were significantly higher in non-survivors.

          Conclusions

          Our study demonstrates that testosterone, aromatase, and TMPRSS2 are markers of COVID-19 severity. Estradiol levels do not change with disease severity in COVID-19. In terms of mortality prediction, higher aromatase and TMPRSS-2 levels can be used to predict mortality from COVID-19 in hospitalized patients.

          Plain English Summary

          COVID-19 has caused over a million deaths in the U.S., with men often getting sicker than women. Testosterone, a male hormone, helps control a protein called TMPRSS-2, which allows the COVID-19 virus to spread more easily in the body. A protein called aromatase converts the male hormone testosterone into the female hormone estrogen. It is thought that female hormone estrogen helps protect women from getting seriously ill from COVID-19. To understand the role of these hormones in COVID-19 and sex differences, we measured levels of testosterone, estrogen, aromatase (which turns testosterone into estrogen), and TMPRSS-2 in hospitalized COVID-19 patients. We also checked how this level might reflect the severity of the disease. We found that critically ill COVID-19 patients (the ones in ICU) had higher levels of TMPRSS-2 and aromatase, and lower testosterone levels. When we used these hormone levels to predict death in hospitalized COVID-19 patients, higher levels of TMPRSS-2 and aromatase were linked to a lower chance of survival.

          Highlights

          COVID-19 Disease Severity: In hospitalized patients with COVID-19, higher TMPRSS-2, aromatase and lower total testosterone are markers of disease severity.

          COVID-19 Mortality: In hospitalized patients with COVID-19, TMPRSS2 and aromatase levels are significantly increased in COVID-19 non survivors.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

          Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus

              Summary A SARS-CoV-2 variant carrying the Spike protein amino acid change D614G has become the most prevalent form in the global pandemic. Dynamic tracking of variant frequencies revealed a recurrent pattern of G614 increase at multiple geographic levels: national, regional and municipal. The shift occurred even in local epidemics where the original D614 form was well established prior to the introduction of the G614 variant. The consistency of this pattern was highly statistically significant, suggesting that the G614 variant may have a fitness advantage. We found that the G614 variant grows to higher titer as pseudotyped virions. In infected individuals G614 is associated with lower RT-PCR cycle thresholds, suggestive of higher upper respiratory tract viral loads, although not with increased disease severity. These findings illuminate changes important for a mechanistic understanding of the virus, and support continuing surveillance of Spike mutations to aid in the development of immunological interventions.
                Bookmark

                Author and article information

                Contributors
                Bharti.manwani@uth.tmc.edu
                Journal
                Biol Sex Differ
                Biol Sex Differ
                Biology of Sex Differences
                BioMed Central (London )
                2042-6410
                24 October 2024
                24 October 2024
                2024
                : 15
                : 84
                Affiliations
                [1 ]Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, ( https://ror.org/03gds6c39) Houston, TX 77030 USA
                [2 ]Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, McGovern Medical School, ( https://ror.org/03gds6c39) Houston, TX 77030 USA
                Article
                658
                10.1186/s13293-024-00658-4
                11515603
                39449074
                b788fabb-5a4b-457a-85d8-43264949a627
                © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 10 July 2024
                : 4 October 2024
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000025, National Institute of Mental Health;
                Award ID: R01MH127856
                Funded by: FundRef http://dx.doi.org/10.13039/100000968, American Heart Association;
                Award ID: 20CDA35310306
                Funded by: NATIONAL INSTITUTE OF AGING
                Award ID: R21AG070860
                Categories
                Research
                Custom metadata
                © Society for Women's Health Research and BioMed Central Ltd. 2024

                Human biology
                covid-19,sex differences,crp,aromatase
                Human biology
                covid-19, sex differences, crp, aromatase

                Comments

                Comment on this article