309
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Brain Computer Interfaces, a Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices.

          Related collections

          Most cited references350

          • Record: found
          • Abstract: found
          • Article: not found

          Response of brain tissue to chronically implanted neural electrodes.

          Chronically implanted recording electrode arrays linked to prosthetics have the potential to make positive impacts on patients suffering from full or partial paralysis. Such arrays are implanted into the patient's cortical tissue and record extracellular potentials from nearby neurons, allowing the information encoded by the neuronal discharges to control external devices. While such systems perform well during acute recordings, they often fail to function reliably in clinically relevant chronic settings. Available evidence suggests that a major failure mode of electrode arrays is the brain tissue reaction against these implants, making the biocompatibility of implanted electrodes a primary concern in device design. This review presents the biological components and time course of the acute and chronic tissue reaction in brain tissue, analyses the brain tissue response of current electrode systems, and comments on the various material science and bioactive strategies undertaken by electrode designers to enhance electrode performance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A review of classification algorithms for EEG-based brain–computer interfaces

            In this paper we review classification algorithms used to design brain-computer interface (BCI) systems based on electroencephalography (EEG). We briefly present the commonly employed algorithms and describe their critical properties. Based on the literature, we compare them in terms of performance and provide guidelines to choose the suitable classification algorithm(s) for a specific BCI.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources.

              An extension of the infomax algorithm of Bell and Sejnowski (1995) is presented that is able blindly to separate mixed signals with sub- and supergaussian source distributions. This was achieved by using a simple type of learning rule first derived by Girolami (1997) by choosing negentropy as a projection pursuit index. Parameterized probability distributions that have sub- and supergaussian regimes were used to derive a general learning rule that preserves the simple architecture proposed by Bell and Sejnowski (1995), is optimized using the natural gradient by Amari (1998), and uses the stability analysis of Cardoso and Laheld (1996) to switch between sub- and supergaussian regimes. We demonstrate that the extended infomax algorithm is able to separate 20 sources with a variety of source distributions easily. Applied to high-dimensional data from electroencephalographic recordings, it is effective at separating artifacts such as eye blinks and line noise from weaker electrical signals that arise from sources in the brain.
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel, Switzerland)
                Molecular Diversity Preservation International (MDPI)
                1424-8220
                2012
                31 January 2012
                : 12
                : 2
                : 1211-1279
                Affiliations
                Department of Signal Theory, Communications and Telematics Engineering, University of Valladolid, Valladolid 47011, Spain; E-Mail: jgomgil@ 123456tel.uva.es
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: lnicalo@ 123456ribera.tel.uva.es ; Tel.: +34-690-357-486; Fax: +34-983-423-667.
                Article
                sensors-12-01211
                10.3390/s120201211
                3304110
                22438708
                b76b8ae0-d8fd-4b66-9f6b-c630e20969e1
                © 2012 by the authors; licensee MDPI, Basel, Switzerland

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 29 December 2011
                : 16 January 2012
                : 29 January 2012
                Categories
                Review

                Biomedical engineering
                brain-machine interface,brain-computer interface (bci),collaborative sensor system,electroencephalography (eeg),rehabilitation,artifact,neuroimaging

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content332

                Cited by420

                Most referenced authors1,980