11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Toward Stimuli‐Responsive Dynamic Thermosets through Continuous Development and Improvements in Covalent Adaptable Networks (CANs)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references205

          • Record: found
          • Abstract: found
          • Article: not found

          Designing hydrogels for controlled drug delivery

          Hydrogel delivery systems can leverage therapeutically beneficial outcomes of drug delivery and have found clinical use. Hydrogels can provide spatial and temporal control over the release of various therapeutic agents, including small-molecule drugs, macromolecular drugs and cells. Owing to their tunable physical properties, controllable degradability and capability to protect labile drugs from degradation, hydrogels serve as a platform in which various physiochemical interactions with the encapsulated drugs control their release. In this Review, we cover multiscale mechanisms underlying the design of hydrogel drug delivery systems, focusing on physical and chemical properties of the hydrogel network and the hydrogel-drug interactions across the network, mesh, and molecular (or atomistic) scales. We discuss how different mechanisms interact and can be integrated to exert fine control in time and space over the drug presentation. We also collect experimental release data from the literature, review clinical translation to date of these systems, and present quantitative comparisons between different systems to provide guidelines for the rational design of hydrogel delivery systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Polymers for 3D Printing and Customized Additive Manufacturing

            Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet. The ongoing transition from rapid prototyping to rapid manufacturing prompts new challenges for mechanical engineers and materials scientists alike. Because polymers are by far the most utilized class of materials for AM, this Review focuses on polymer processing and the development of polymers and advanced polymer systems specifically for AM. AM techniques covered include vat photopolymerization (stereolithography), powder bed fusion (SLS), material and binder jetting (inkjet and aerosol 3D printing), sheet lamination (LOM), extrusion (FDM, 3D dispensing, 3D fiber deposition, and 3D plotting), and 3D bioprinting. The range of polymers used in AM encompasses thermoplastics, thermosets, elastomers, hydrogels, functional polymers, polymer blends, composites, and biological systems. Aspects of polymer design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed. Selected applications demonstrate how polymer-based AM is being exploited in lightweight engineering, architecture, food processing, optics, energy technology, dentistry, drug delivery, and personalized medicine. Unparalleled by metals and ceramics, polymer-based AM plays a key role in the emerging AM of advanced multifunctional and multimaterial systems including living biological systems as well as life-like synthetic systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A thermally re-mendable cross-linked polymeric material.

              We have developed a transparent organic polymeric material that can repeatedly mend or "re-mend" itself under mild conditions. The material is a tough solid at room temperature and below with mechanical properties equaling those of commercial epoxy resins. At temperatures above 120 degrees C, approximately 30% (as determined by solid-state nuclear magnetic resonance spectroscopy) of "intermonomer" linkages disconnect but then reconnect upon cooling, This process is fully reversible and can be used to restore a fractured part of the polymer multiple times, and it does not require additional ingredients such as a catalyst, additional monomer, or special surface treatment of the fractured interface.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                0935-9648
                1521-4095
                May 2020
                February 14 2020
                May 2020
                : 32
                : 20
                : 1906876
                Affiliations
                [1 ]Department of Chemical and Biological EngineeringUniversity of Colorado UCB 596 Boulder CO 80309 USA
                [2 ]Department of Polymer ChemistryFaculty of ChemistryMaria Curia‐Sklodowska University pl. Marii Curie‐Sklodowskiej 5 Lublin 20‐031 Poland
                [3 ]Medical Scientist Training ProgramSchool of MedicineUniversity of Colorado Aurora CO 80045 USA
                [4 ]Materials Science and Engineering ProgramUniversity of Colorado Boulder CO 80309 USA
                Article
                10.1002/adma.201906876
                b764e148-60fe-4d66-a29b-c403376d2aed
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article