29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Gatekeeper Chaperone Complex Directs Translocator Secretion during Type Three Secretion

      research-article
      1 , 2 , 3 , *
      PLoS Pathogens
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many Gram-negative bacteria use Type Three Secretion Systems (T3SS) to deliver effector proteins into host cells. These protein delivery machines are composed of cytosolic components that recognize substrates and generate the force needed for translocation, the secretion conduit, formed by a needle complex and associated membrane spanning basal body, and translocators that form the pore in the target cell. A defined order of secretion in which needle component proteins are secreted first, followed by translocators, and finally effectors, is necessary for this system to be effective. While the secreted effectors vary significantly between organisms, the ∼20 individual protein components that form the T3SS are conserved in many pathogenic bacteria. One such conserved protein, referred to as either a plug or gatekeeper, is necessary to prevent unregulated effector release and to allow efficient translocator secretion. The mechanism by which translocator secretion is promoted while effector release is inhibited by gatekeepers is unknown. We present the structure of the Chlamydial gatekeeper, CopN, bound to a translocator-specific chaperone. The structure identifies a previously unknown interface between gatekeepers and translocator chaperones and reveals that in the gatekeeper-chaperone complex the canonical translocator-binding groove is free to bind translocators. Structure-based mutagenesis of the homologous complex in Shigella reveals that the gatekeeper-chaperone-translocator complex is essential for translocator secretion and for the ordered secretion of translocators prior to effectors.

          Author Summary

          Type Three Secretion Systems (T3SS) are essential virulence factors found in many pathogenic Gram-negative bacteria. These machines aid infection by delivering bacterial proteins into host cells where these proteins modulate host processes and help establish a niche for the bacteria. Protein delivery occurs in a highly regulated manner in which proteins involved in early steps in infection, or necessary to build the secretion conduit, are typically secreted before other substrates, a phenomenon termed secretion hierarchy. This study presents the structure of a molecular complex that physically links one class of early substrates, components of the secretion pore termed translocators, to a gatekeeper protein, a protein that has been implicated in the secretion hierarchy. Disruption of this interaction in Shigella disrupts the secretion of translocators, while supporting increased secretion of effectors, resulting in phenotypes indistinguishable from a gatekeeper deletion, and leading to the conclusion that a gatekeeper-chaperone-translocator complex is a critical component of the T3SS.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins.

          The fortran program ESPript was created in 1993, to display on a PostScript figure multiple sequence alignments adorned with secondary structure elements. A web server was made available in 1999 and ESPript has been linked to three major web tools: ProDom which identifies protein domains, PredictProtein which predicts secondary structure elements and NPS@ which runs sequence alignment programs. A web server named ENDscript was created in 2002 to facilitate the generation of ESPript figures containing a large amount of information. ENDscript uses programs such as BLAST, Clustal and PHYLODENDRON to work on protein sequences and such as DSSP, CNS and MOLSCRIPT to work on protein coordinates. It enables the creation, from a single Protein Data Bank identifier, of a multiple sequence alignment figure adorned with secondary structure elements of each sequence of known 3D structure. Similar 3D structures are superimposed in turn with the program PROFIT and a final figure is drawn with BOBSCRIPT, which shows sequence and structure conservation along the Calpha trace of the query. ESPript and ENDscript are available at http://genopole.toulouse.inra.fr/ESPript.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Dali: a network tool for protein structure comparison.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protein delivery into eukaryotic cells by type III secretion machines.

              Bacteria that have sustained long-standing close associations with eukaryotic hosts have evolved specific adaptations to survive and replicate in this environment. Perhaps one of the most remarkable of those adaptations is the type III secretion system (T3SS)--a bacterial organelle that has specifically evolved to deliver bacterial proteins into eukaryotic cells. Although originally identified in a handful of pathogenic bacteria, T3SSs are encoded by a large number of bacterial species that are symbiotic or pathogenic for humans, other animals including insects or nematodes, and plants. The study of these systems is leading to unique insights into not only organelle assembly and protein secretion but also mechanisms of symbiosis and pathogenesis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                November 2014
                6 November 2014
                : 10
                : 11
                : e1004498
                Affiliations
                [1 ]Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
                [2 ]Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
                [3 ]Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
                Osaka University, Japan
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: BWS TLA. Performed the experiments: BWS TLA. Analyzed the data: BWS TLA. Contributed reagents/materials/analysis tools: BWS TLA. Wrote the paper: BWS TLA.

                Article
                PPATHOGENS-D-14-01796
                10.1371/journal.ppat.1004498
                4222845
                25375170
                b73c947d-78d7-41e4-a062-552832a99783
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 July 2014
                : 2 October 2014
                Page count
                Pages: 10
                Funding
                This project was supported by institutional funds to BWS and Public Health Service grants R01 AI072453 and AI108778 from the National Institutes of Health ( www.NIH.gov). TLA was supported by the Integrative Training in Therapeutic Discovery Training Grant, DA022873 ( www.NIH.gov), and an American Heart Association Predoctoral Fellowship, 12PRE11750031 ( www.heart.org). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE, www.energy.gov) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (Grant 085P1000817). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Proteins
                Protein Structure
                Biophysics
                Microbiology
                Bacteriology
                Bacterial Physiology
                Secretion Systems
                Bacterial Biochemistry
                Gram Negative Bacteria
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. The diffraction data and model are deposited at the protein data bank ( www.pdb.org) with the accession code 4NRH. Other relevant data are included in the manuscript and supporting information.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article