8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development and validation of a risk prediction model for overall survival in patients with nasopharyngeal carcinoma: a prospective cohort study in China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Nasopharyngeal carcinoma (NPC) is prevailing in Southern China, characterized by distinct geographical distribution. Aimed to predict the overall survival (OS) of patients with nasopharyngeal carcinoma, this study developed and validated nomograms considering demographic variables, hematological biomarkers, and oncogenic pathogens in China.

          Methods

          The clinicopathological and follow-up data of the nasopharyngeal carcinoma patients obtained from a prospective longitudinal cohort study in the Chongqing University Cancer Hospital between Jan 1, 2017 and Dec 31, 2019 ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{n}=1635$$\end{document} ). Cox regression model was used to tested the significance of all available variables as prognostic factors of OS. And independent prognostic factors were identified based on multivariable analysis to model nomogram. Concordance index (C-index), area under the receiver operating characteristic (AUC), calibration curve, and decision curve analysis (DCA) were measured to assess the model performance of nomogram.

          Results

          Data was randomly divided into a training cohort (1227 observers, about 70% of data) and a validation group (408 observers, about 30% of data). At multivariable analysis, the following were independent predictors of OS in NPC patients and entered into the nomogram: age (hazard ratio [HR]: 1.03), stage (stage IV vs. stage I–II, HR: 4.54), radiotherapy (Yes vs. No, HR: 0.43), EBV ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge 1000$$\end{document} vs. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<1000$$\end{document} , HR: 1.92), LAR ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$>6.15$$\end{document} vs. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 6.15$$\end{document} , HR: 2.05), NLR ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$>4.84$$\end{document} vs. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 4.84$$\end{document} HR: 1.54), and PLR ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$>206.33$$\end{document} vs. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 206.33$$\end{document} , HR: 1.79). The C-indexes for training cohort at 1-, 3- and 5-year were 0.73, 0.83, 0.80, respectively, in the validation cohort, the C-indexes were 0.74 (95% CI 0.63–0.86), 0.80 (95% CI 0.73–0.87), and 0.77 (95% CI 0.67–0.86), respectively. The calibration curve demonstrated that favorable agreement between the predictions of the nomograms and the actual observations in the training and validation cohorts. In addition, the decision curve analysis proved that the nomogram model had the highest overall net benefit.

          Conclusion

          A new prognostic model to predict OS of patients with NPC was developed. This can offer clinicians treatment making and patient counseling. Furthermore, the nomogram was deployed into a website server for use.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

          Summary Background In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and development investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nasopharyngeal carcinoma

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gemcitabine and Cisplatin Induction Chemotherapy in Nasopharyngeal Carcinoma

              Platinum-based concurrent chemoradiotherapy is the standard of care for patients with locoregionally advanced nasopharyngeal carcinoma. Additional gemcitabine and cisplatin induction chemotherapy has shown promising efficacy in phase 2 trials.
                Bookmark

                Author and article information

                Contributors
                387714294@qq.com
                13996412826@163.com
                tohongying@163.com
                Journal
                Cancer Cell Int
                Cancer Cell Int
                Cancer Cell International
                BioMed Central (London )
                1475-2867
                19 November 2022
                19 November 2022
                2022
                : 22
                : 360
                Affiliations
                [1 ]GRID grid.203458.8, ISNI 0000 0000 8653 0555, Department of Health Statistics, School of Public Health, , Chongqing Medical University, ; Chongqing, 400016 China
                [2 ]GRID grid.190737.b, ISNI 0000 0001 0154 0904, Chongqing Cancer Multi-Omics Big Data Application Engineering Research Center, , Chongqing University Cancer Hospital, ; Chongqing, 400030 China
                [3 ]GRID grid.190737.b, ISNI 0000 0001 0154 0904, MOE Key Lab for Biorheological Science and Technology, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, , Chongqing University, ; Chongqing, 400030 China
                Article
                2776
                10.1186/s12935-022-02776-8
                9675189
                36403013
                b737b29b-e49a-48ae-9762-a6976a15ec99
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 18 August 2022
                : 2 November 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100011933, Chongqing Science and Technology Foundation;
                Award ID: cstc2020jxjl130016
                Award ID: cstc2020jxjl130016
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                Oncology & Radiotherapy
                nasopharyngeal carcinoma,nomogram,overall survival,prognosis
                Oncology & Radiotherapy
                nasopharyngeal carcinoma, nomogram, overall survival, prognosis

                Comments

                Comment on this article