32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dendritic cell migration in health and disease

      , ,
      Nature Reviews Immunology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dendritic cells (DCs) are potent and versatile antigen-presenting cells, and their ability to migrate is key for the initiation of protective pro-inflammatory as well as tolerogenic immune responses. Recent comprehensive studies have highlighted the importance of DC migration in the maintenance of immune surveillance and

          Related collections

          Most cited references255

          • Record: found
          • Abstract: found
          • Article: not found

          Structural and functional features of central nervous system lymphatics

          One of the characteristics of the CNS is the lack of a classical lymphatic drainage system. Although it is now accepted that the CNS undergoes constant immune surveillance that takes place within the meningeal compartment 1–3 , the mechanisms governing the entrance and exit of immune cells from the CNS remain poorly understood 4–6 . In searching for T cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the CSF, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the CNS. The discovery of the CNS lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and shed new light on the etiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbiota regulates immune defense against respiratory tract influenza A virus infection.

            Although commensal bacteria are crucial in maintaining immune homeostasis of the intestine, the role of commensal bacteria in immune responses at other mucosal surfaces remains less clear. Here, we show that commensal microbiota composition critically regulates the generation of virus-specific CD4 and CD8 T cells and antibody responses following respiratory influenza virus infection. By using various antibiotic treatments, we found that neomycin-sensitive bacteria are associated with the induction of productive immune responses in the lung. Local or distal injection of Toll-like receptor (TLR) ligands could rescue the immune impairment in the antibiotic-treated mice. Intact microbiota provided signals leading to the expression of mRNA for pro-IL-1β and pro-IL-18 at steady state. Following influenza virus infection, inflammasome activation led to migration of dendritic cells (DCs) from the lung to the draining lymph node and T-cell priming. Our results reveal the importance of commensal microbiota in regulating immunity in the respiratory mucosa through the proper activation of inflammasomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules

              Aspelund et al. discover the presence of a lymphatic vessel network in the dura mater of the mouse brain and show that these dural lymphatic vessels are important for the clearance of macromolecules from the brain.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Immunology
                Nat Rev Immunol
                Springer Nature
                1474-1733
                1474-1741
                November 28 2016
                November 28 2016
                : 17
                : 1
                : 30-48
                Article
                10.1038/nri.2016.116
                27890914
                b7307b6f-98d2-4319-8e17-0f7250dbbdbd
                © 2016
                History

                Comments

                Comment on this article