10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deconstructing the traditional Japanese medicine “Kampo”: compounds, metabolites and pharmacological profile of maoto, a remedy for flu-like symptoms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pharmacological activities of the traditional Japanese herbal medicine (Kampo) are putatively mediated by complex interactions between multiple herbal compounds and host factors, which are difficult to characterize via the reductive approach of purifying major bioactive compounds and elucidating their mechanisms by conventional pharmacology. Here, we performed comprehensive compound, pharmacological and metabolomic analyses of maoto, a pharmaceutical-grade Kampo prescribed for flu-like symptoms, in normal and polyI:C-injected rats, the latter suffering from acute inflammation via Toll-like receptor 3 activation. In total, 352 chemical composition-determined compounds (CCDs) were detected in maoto extract by mass spectrometric analysis. After maoto treatment, 113 CCDs were newly detected in rat plasma. Of these CCDs, 19 were present in maoto extract, while 94 were presumed to be metabolites generated from maoto compounds or endogenous substances such as phospholipids. At the phenotypic level, maoto ameliorated the polyI:C-induced decrease in locomotor activity and body weight; however, body weight was not affected by individual maoto components in isolation. In accordance with symptom relief, maoto suppressed TNF-α and IL-1β, increased IL-10, and altered endogenous metabolites related to sympathetic activation and energy expenditure. Furthermore, maoto decreased inflammatory prostaglandins and leukotrienes, and increased anti-inflammatory eicosapentaenoic acid and hydroxyl-eicosapentaenoic acids, suggesting that it has differential effects on eicosanoid metabolic pathways involving cyclooxygenases, lipoxygenases and cytochrome P450s. Collectively, these data indicate that extensive profiling of compounds, metabolites and pharmacological phenotypes is essential for elucidating the mechanisms of herbal medicines, whose vast array of constituents induce a wide range of changes in xenobiotic and endogenous metabolism.

          Systems biology of traditional medicine: comprehensive analysis of a traditional Japanese medicine, maoto

          Pharmacological activities of Kampo, or traditional Japanese herbal medicine, are putatively mediated by complex interactions between the plant-derived compounds and endogenous molecules. To elucidate these properties, we performed comprehensive phytochemical profiling, and pharmacological and metabolomic analyses of maoto, an herbal remedy for flu-like symptoms. In the plasma of maoto-treated rats, we detected maoto-derived compounds, metabolites produced from the chemical transformation of maoto compounds by host metabolism and gut microbes, and endogenous metabolites that were appeared following maoto administration. In an acute inflammatory rat model, maoto ameliorated symptoms of sickness behavior, suppressed inflammatory cytokines, and extensively affected common metabolites and lipid mediators. These data suggest that the diverse chemical composition of Kampo broadly affects the host’s endogenous metabolism and exerts specific pharmacological effects.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Bow ties, metabolism and disease.

          Highly organized, universal structures underlying biological and technological networks mediate effective trade-offs among efficiency, robustness and evolvability, with predictable fragilities that can be used to understand disease pathogenesis. The aims of this article are to describe the features of one common organizational architecture in biology, the bow tie. Large-scale organizational frameworks such as the bow tie are necessary starting points for higher-resolution modeling of complex biologic processes
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A robustness-based approach to systems-oriented drug design.

            Many potential drugs that specifically target a particular protein considered to underlie a given disease have been found to be less effective than hoped, or to cause significant side effects. The intrinsic robustness of living systems against various perturbations is a key factor that prevents such compounds from being successful. By studying complex network systems and reformulating control and communication theories that are well established in engineering, a theoretical foundation for a systems-oriented approach to more effectively control the robustness of living systems, particularly at the cellular level, could be developed. Here, I use examples that are based on existing drugs to illustrate the concept of robustness, and then discuss how a greater consideration of the importance of robustness could influence the design of new drugs that will be intended to control complex systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immune-neural connections: how the immune system's response to infectious agents influences behavior.

              Humans and animals use the classical five senses of sight, sound, touch, smell and taste to monitor their environment. The very survival of feral animals depends on these sensory perception systems, which is a central theme in scholarly research on comparative aspects of anatomy and physiology. But how do all of us sense and respond to an infection? We cannot see, hear, feel, smell or taste bacterial and viral pathogens, but humans and animals alike are fully aware of symptoms of sickness that are caused by these microbes. Pain, fatigue, altered sleep pattern, anorexia and fever are common symptoms in both sick animals and humans. Many of these physiological changes represent adaptive responses that are considered to promote animal survival, and this constellation of events results in sickness behavior. Infectious agents display a variety of pathogen-associated molecular patterns (PAMPs) that are recognized by pattern recognition receptors (PRRs). These PRR are expressed on both the surface [e.g. Toll-like receptor (TLR)-4] and in the cytoplasm [e.g. nucleotide-binding oligomerization domain (Nod)-like receptors] of cells of the innate immune system, primarily macrophages and dendritic cells. These cells initiate and propagate an inflammatory response by stimulating the synthesis and release of a variety of cytokines. Once an infection has occurred in the periphery, both cytokines and bacterial toxins deliver this information to the brain using both humoral and neuronal routes of communication. For example, binding of PRR can lead to activation of the afferent vagus nerve, which communicates neuronal signals via the lower brain stem (nucleus tractus solitarius) to higher brain centers such as the hypothalamus and amygdala. Blood-borne cytokines initiate a cytokine response from vascular endothelial cells that form the blood-brain barrier (BBB). Cytokines can also reach the brain directly by leakage through the BBB via circumventricular organs or by being synthesized within the brain, thus forming a mirror image of the cytokine milieu in the periphery. Although all cells within the brain are capable of initiating cytokine secretion, microglia have an early response to incoming neuronal and humoral stimuli. Inhibition of proinflammatory cytokines that are induced following bacterial infection blocks the appearance of sickness behaviors. Collectively, these data are consistent with the notion that the immune system communicates with the brain to regulate behavior in a way that is consistent with animal survival.
                Bookmark

                Author and article information

                Contributors
                +81-29-889-3860 , nishi_akinori@mail.tsumura.co.jp
                Journal
                NPJ Syst Biol Appl
                NPJ Syst Biol Appl
                NPJ Systems Biology and Applications
                Nature Publishing Group UK (London )
                2056-7189
                24 October 2017
                24 October 2017
                2017
                : 3
                : 32
                Affiliations
                [1 ]Tsumura Research Laboratories, Tsumura & CO., Ibaraki, Japan
                [2 ]Comprehensive Kampo Research Planning Department, Tsumura & CO., Tokyo, Japan
                [3 ]Sotobo Children’s Clinic, Medical Corporation Shigyo-no-kai, Chiba, Japan
                [4 ]ISNI 0000 0004 0594 9821, GRID grid.411556.2, General Medicine, , Fukuoka University Hospital, ; Fukuoka, Japan
                [5 ]Product and General Administration Department, Tsumura & CO., Tokyo, Japan
                [6 ]GRID grid.452864.9, The Systems Biology Institute, ; Tokyo, Japan
                [7 ]Laboratory for Disease Systems Modeling, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
                [8 ]ISNI 0000 0000 9805 2626, GRID grid.250464.1, Okinawa Institute of Science and Technology, ; Okinawa, Japan
                [9 ]ISNI 0000 0004 1764 0071, GRID grid.452725.3, Sony Computer Science Laboratories, Inc, ; Tokyo, Japan
                Author information
                http://orcid.org/0000-0002-5171-9096
                Article
                32
                10.1038/s41540-017-0032-1
                5654968
                29075514
                b6ff0e0f-048d-414b-9f3e-60f88963645a
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 9 July 2016
                : 5 September 2017
                : 13 September 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Comments

                Comment on this article