2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Legumes from the Paleocene sediments of India and their ecological significance

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During the early Paleogene, greenhouse gases created warm global climates. These warm climates redistributed the habitat of marine and terrestrial biota globally. Understanding the ecology of biotas under extremely warm climates is important to decipher their behavior in future climate warming. Here we report two new legume fossils ( Leguminocarpum meghalayensis Bhatia, Srivastava et Mehrotra sp. nov., and Parvileguminophyllum damalgiriensis Bhatia, Srivastava et Mehrotra sp. nov.) from the late Paleocene sediments of Tura Formation of Meghalaya, northeast India. Globally, the Paleocene legume fossil records indicate that legumes most likely immigrated to India from Africa via the Ladakh-Kohistan Arc during the early Paleogene. Moreover, previously reconstructed climate data from the Tura Formation indicate that legumes were well adapted to a warm seasonal climate with monsoon rains.

          Highlights

          • We report two new fossils of legumes from late Paleocene sediments of India.

          • Fossil leaf shows maximum resemblance to Rhynchosia.

          • The fossil locality paleolatitude during late Paleocene suggests a probable path for the migration of legumes into India.

          • Legumes have been well adapted to seasonal warm climates since the Paleocene.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Trends, rhythms, and aberrations in global climate 65 Ma to present.

          Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10(5) to 10(7) years, rhythmic or periodic cycles driven by orbital processes with 10(4)- to 10(6)-year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10(3) to 10(5) years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity.

            The establishment of modern terrestrial life is indissociable from angiosperm evolution. While available molecular clock estimates of angiosperm age range from the Paleozoic to the Late Cretaceous, the fossil record is consistent with angiosperm diversification in the Early Cretaceous. The time-frame of angiosperm evolution is here estimated using a sample representing 87% of families and sequences of five plastid and nuclear markers, implementing penalized likelihood and Bayesian relaxed clocks. A literature-based review of the palaeontological record yielded calibrations for 137 phylogenetic nodes. The angiosperm crown age was bound within a confidence interval calculated with a method that considers the fossil record of the group. An Early Cretaceous crown angiosperm age was estimated with high confidence. Magnoliidae, Monocotyledoneae and Eudicotyledoneae diversified synchronously 135-130 million yr ago (Ma); Pentapetalae is 126-121 Ma; and Rosidae (123-115 Ma) preceded Asteridae (119-110 Ma). Family stem ages are continuously distributed between c. 140 and 20 Ma. This time-frame documents an early phylogenetic proliferation that led to the establishment of major angiosperm lineages, and the origin of over half of extant families, in the Cretaceous. While substantial amounts of angiosperm morphological and functional diversity have deep evolutionary roots, extant species richness was probably acquired later.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transient floral change and rapid global warming at the Paleocene-Eocene boundary.

              Rapid global warming of 5 degrees to 10 degrees C during the Paleocene-Eocene Thermal Maximum (PETM) coincided with major turnover in vertebrate faunas, but previous studies have found little floral change. Plant fossils discovered in Wyoming, United States, show that PETM floras were a mixture of native and migrant lineages and that plant range shifts were large and rapid (occurring within 10,000 years). Floral composition and leaf shape and size suggest that climate warmed by approximately 5 degrees C during the PETM and that precipitation was low early in the event and increased later. Floral response to warming and/or increased atmospheric CO2 during the PETM was comparable in rate and magnitude to that seen in postglacial floras and to the predicted effects of anthropogenic carbon release and climate change on future vegetation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Plant Divers
                Plant Divers
                Plant Diversity
                Kunming Institute of Botany, Chinese Academy of Sciences
                2096-2703
                2468-2659
                14 August 2022
                March 2023
                14 August 2022
                : 45
                : 2
                : 199-210
                Affiliations
                [a ]Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow 226 007, India
                [b ]Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
                Author notes
                []Corresponding author. Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow 226 007, India. gaurav_jan10@ 123456yahoo.co.in
                Article
                S2468-2659(22)00076-2
                10.1016/j.pld.2022.08.001
                10105134
                37069925
                b6eada3b-e091-49dd-9cf5-519160aa0e1a
                © 2022 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 6 April 2022
                : 4 August 2022
                : 8 August 2022
                Categories
                Research Paper

                fabaceae,global warming,fruits,damalgiri,tura,rhynchosia
                fabaceae, global warming, fruits, damalgiri, tura, rhynchosia

                Comments

                Comment on this article