2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Interleukin-4 activates the PI3K/AKT signaling to promote apoptosis and inhibit the proliferation of granulosa cells

      , , , , , , ,
      Experimental Cell Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Role of Inflammatory and Anti-Inflammatory Cytokines in the Pathogenesis of Osteoarthritis

            Osteoarthritis (OA) is the most common chronic disease of human joints. The basis of pathologic changes involves all the tissues forming the joint; already, at an early stage, it has the nature of inflammation with varying degrees of severity. An analysis of the complex relationships indicates that the processes taking place inside the joint are not merely a set that (seemingly) only includes catabolic effects. Apart from them, anti-inflammatory anabolic processes also occur continually. These phenomena are driven by various mediators, of which the key role is attributed to the interactions within the cytokine network. The most important group controlling the disease seems to be inflammatory cytokines, including IL-1 β , TNF α , IL-6, IL-15, IL-17, and IL-18. The second group with antagonistic effect is formed by cytokines known as anti-inflammatory cytokines such as IL-4, IL-10, and IL-13. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of OA with respect to inter- and intracellular signaling pathways is still under investigation. This paper summarizes the current state of knowledge. The cytokine network in OA is put in the context of cells involved in this degenerative joint disease. The possibilities for further implementation of new therapeutic strategies in OA are also pointed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional diversity of helper T lymphocytes.

              The existence of subsets of CD4+ helper T lymphocytes that differ in their cytokine secretion patterns and effector functions provides a framework for understanding the heterogeneity of normal and pathological immune responses. Defining the cellular and molecular mechanisms of helper-T-cell differentiation should lead to rational strategies for manipulating immune responses for prophylaxis and therapy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Experimental Cell Research
                Experimental Cell Research
                Elsevier BV
                00144827
                March 2022
                March 2022
                : 412
                : 1
                : 113002
                Article
                10.1016/j.yexcr.2021.113002
                34973261
                b6ded43d-6913-44a0-8a23-4849d0eaa2dc
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article