22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enzymatic activities and functional interdependencies of Bacillus subtilis lipoteichoic acid synthesis enzymes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lipoteichoic acid (LTA) is an important cell wall polymer in Gram-positive bacteria. The enzyme responsible for polyglycerolphosphate LTA synthesis is LtaS, first described in Staphylococcus aureus. Four LtaS orthologues, LtaS BS, YfnI, YqgS and YvgJ, are present in Bacillus subtilis. Using an in vitro enzyme assay, we determined that all four proteins are Mn 2+-dependent metal enzymes that use phosphatidylglycerol as a substrate. We show that LtaS BS, YfnI and YqgS can produce polymers, suggesting that these three proteins are bona-fide LTA synthases while YvgJ functions as an LTA primase, as indicated by the accumulation of a GroP-Glc 2-DAG glycolipid. Western blot analysis of LTA produced by ltaS BS , yfnI, yqgS and yvgJ single, triple and the quadruple mutant, showed that LTA production was only abolished in the quadruple and the YvgJ-only expressing mutant. B. subtilis strains expressing YfnI in the absence of LtaS BS produced LTA of retarded mobility, presumably caused by an increase in chain length as suggested by a structural analysis of purified LTA. Taken together, the presented results indicate that the mere presence or absence of LTA cannot account for cell division and sporulation defects observed in the absence of individual enzymes and revealed an unexpected enzymatic interdependency of LtaS-type proteins in B. subtilis.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension.

          Gene splicing by overlap extension is a new approach for recombining DNA molecules at precise junctions irrespective of nucleotide sequences at the recombination site and without the use of restriction endonucleases or ligase. Fragments from the genes that are to be recombined are generated in separate polymerase chain reactions (PCRs). The primers are designed so that the ends of the products contain complementary sequences. When these PCR products are mixed, denatured, and reannealed, the strands having the matching sequences at their 3' ends overlap and act as primers for each other. Extension of this overlap by DNA polymerase produces a molecule in which the original sequences are 'spliced' together. This technique is used to construct a gene encoding a mosaic fusion protein comprised of parts of two different class-I major histocompatibility genes. This simple and widely applicable approach has significant advantages over standard recombinant DNA techniques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections.

            Colonization of the anterior nares in approximately 37% of the population is a major risk factor for severe Staphylococcus aureus infections. Here we show that wall teichoic acid (WTA), a surface-exposed staphylococcal polymer, is essential for nasal colonization and mediates interaction with human nasal epithelial cells. WTA-deficient mutants were impaired in their adherence to nasal cells, and were completely unable to colonize cotton rat nares. This study describes the first essential factor for S. aureus nasal colonization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Novel cassette-based shuttle vector system for gram-positive bacteria.

              Our understanding of staphylococcal pathogenesis depends on reliable genetic tools for gene expression analysis and tracing of bacteria. Here, we have developed and evaluated a series of novel versatile Escherichia coli-staphylococcal shuttle vectors based on PCR-generated interchangeable cassettes. Advantages of our module system include the use of (i) staphylococcal low-copy-number, high-copy-number, thermosensitive and theta replicons and selectable markers (choice of erythromycin, tetracycline, chloramphenicol, kanamycin, or spectinomycin); (ii) an E. coli replicon and selectable marker (ampicillin); and (iii) a staphylococcal phage fragment that allows high-frequency transduction and an SaPI fragment that allows site-specific integration into the Staphylococcus aureus chromosome. The staphylococcal cadmium-inducible P(cad)-cadC and constitutive P(blaZ) promoters were designed and analyzed in transcriptional fusions to the staphylococcal beta-lactamase blaZ, the Vibrio fischeri luxAB, and the Aequorea victoria green fluorescent protein reporter genes. The modular design of the vector system provides great flexibility and variety. Questions about gene dosage, complementation, and cis-trans effects can now be conveniently addressed, so that this system constitutes an effective tool for studying gene regulation of staphylococci in various ecosystems.
                Bookmark

                Author and article information

                Journal
                Mol Microbiol
                mmi
                Molecular Microbiology
                Blackwell Publishing Ltd
                0950-382X
                1365-2958
                February 2011
                : 79
                : 3
                : 566-583
                Affiliations
                [1 ]simpleSection of Microbiology, Imperial College London South Kensington Campus, London SW7 2AZ, UK.
                [2 ]simpleDivision of Molecular Biosciences, Imperial College London South Kensington Campus, London SW7 2AZ, UK
                Author notes
                *For correspondence. E-mail a.grundling@ 123456imperial.ac.uk ; Tel. (+44) 2075945256; Fax (+44) 2075943095.

                Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://wileyonlinelibrary.com/onlineopen#OnlineOpen_Terms

                Article
                10.1111/j.1365-2958.2010.07472.x
                3089822
                21255105
                b6b44fc2-c523-48e1-a6e8-ec4ef4c5b711
                Copyright © 2011 Blackwell Publishing Ltd

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 11 November 2010
                Categories
                Research Articles

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article