4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protective Effect of Adipose-Derived Mesenchymal Stem Cell Secretome against Hepatocyte Apoptosis Induced by Liver Ischemia-Reperfusion with Partial Hepatectomy Injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ischemia-reperfusion injury (IRI) is an inevitable complication of liver surgery and liver transplantation. Hepatocyte apoptosis plays a significant role in the pathological process of hepatic IRI. Adipose-derived stem cells (ADSCs) are known to repair and regenerate damaged tissues by producing bioactive factors, including cytokines, exosomes, and extracellular matrix components, which collectively form the secretome of these cells. The aim of this study was to assess the protective effects of the ADSCs secretome after liver ischemia-reperfusion combined with partial hepatectomy in miniature pigs. We successfully established laparoscopic liver ischemia-reperfusion with partial hepatectomy in miniature pigs and injected saline, DMEM, ADSC-secretome, and ADSCs directly into the liver parenchyma immediately afterwards. Both ADSCs and the ADSC-secretome improved the IR-induced ultrastructural changes in hepatocytes and significantly decreased the proportion of TUNEL-positive apoptotic cells along with caspase activity. Consistent with this, P53, Bax, Fas, and Fasl mRNA and protein levels were markedly decreased, while Bcl-2 was significantly increased in the animals treated with ADSCs and ADSC-secretome. Our findings indicate that ADSCs exert therapeutic effects in a paracrine manner through their secretome, which can be a viable alternative to cell-based regenerative therapies.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Apoptosis: A Basic Biological Phenomenon with Wide-ranging Implications in Tissue Kinetics

          The term apoptosis is proposed for a hitherto little recognized mechanism of controlled cell deletion, which appears to play a complementary but opposite role to mitosis in the regulation of animal cell populations. Its morphological features suggest that it is an active, inherently programmed phenomenon, and it has been shown that it can be initiated or inhibited by a variety of environmental stimuli, both physiological and pathological. The structural changes take place in two discrete stages. The first comprises nuclear and cytoplasmic condensation and breaking up of the cell into a number of membrane-bound, ultrastructurally well-preserved fragments. In the second stage these apoptotic bodies are shed from epithelial-lined surfaces or are taken up by other cells, where they undergo a series of changes resembling in vitro autolysis within phagosomes, and are rapidly degraded by lysosomal enzymes derived from the ingesting cells. Apoptosis seems to be involved in cell turnover in many healthy adult tissues and is responsible for focal elimination of cells during normal embryonic development. It occurs spontaneously in untreated malignant neoplasms, and participates in at least some types of therapeutically induced tumour regression. It is implicated in both physiological involution and atrophy of various tissues and organs. It can also be triggered by noxious agents, both in the embryo and adult animal. Images Fig. 8-10 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 6 Fig. 7 Fig. 11-14 Fig. 15-18 Fig. 19 Fig. 20-22 Fig. 23 and 24
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis.

            The tumor suppressor p53 exerts its anti-neoplastic activity primarily through the induction of apoptosis. We found that cytosolic localization of endogenous wild-type or trans-activation-deficient p53 was necessary and sufficient for apoptosis. p53 directly activated the proapoptotic Bcl-2 protein Bax in the absence of other proteins to permeabilize mitochondria and engage the apoptotic program. p53 also released both proapoptotic multidomain proteins and BH3-only proteins [Proapoptotic Bcl-2 family proteins that share only the third Bcl-2 homology domain (BH3)] that were sequestered by Bcl-xL. The transcription-independent activation of Bax by p53 occurred with similar kinetics and concentrations to those produced by activated Bid. We propose that when p53 accumulates in the cytosol, it can function analogously to the BH3-only subset of proapoptotic Bcl-2 proteins to activate Bax and trigger apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mesenchymal stem cells within tumour stroma promote breast cancer metastasis.

              Mesenchymal stem cells have been recently described to localize to breast carcinomas, where they integrate into the tumour-associated stroma. However, the involvement of mesenchymal stem cells (or their derivatives) in tumour pathophysiology has not been addressed. Here, we demonstrate that bone-marrow-derived human mesenchymal stem cells, when mixed with otherwise weakly metastatic human breast carcinoma cells, cause the cancer cells to increase their metastatic potency greatly when this cell mixture is introduced into a subcutaneous site and allowed to form a tumour xenograft. The breast cancer cells stimulate de novo secretion of the chemokine CCL5 (also called RANTES) from mesenchymal stem cells, which then acts in a paracrine fashion on the cancer cells to enhance their motility, invasion and metastasis. This enhanced metastatic ability is reversible and is dependent on CCL5 signalling through the chemokine receptor CCR5. Collectively, these data demonstrate that the tumour microenvironment facilitates metastatic spread by eliciting reversible changes in the phenotype of cancer cells.
                Bookmark

                Author and article information

                Contributors
                Journal
                Stem Cells Int
                Stem Cells Int
                sci
                Stem Cells International
                Hindawi
                1687-966X
                1687-9678
                2021
                18 August 2021
                : 2021
                : 9969372
                Affiliations
                1College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
                2College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
                Author notes

                Academic Editor: Stefan Arnhold

                Author information
                https://orcid.org/0000-0001-7055-3485
                https://orcid.org/0000-0002-8324-3571
                https://orcid.org/0000-0001-5536-4897
                https://orcid.org/0000-0002-4454-3328
                Article
                10.1155/2021/9969372
                8390152
                34457008
                b6aebac5-11ed-4b59-9a7b-c957b08d66bd
                Copyright © 2021 Zhihui Jiao et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 March 2021
                : 7 July 2021
                : 29 July 2021
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 31772807
                Award ID: 31972757
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article