15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Indole-3-Acetic Acid Alleviates Nonalcoholic Fatty Liver Disease in Mice via Attenuation of Hepatic Lipogenesis, and Oxidative and Inflammatory Stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent evidences have linked indole-3-acetic acid (IAA), a gut microbiota-derived metabolite from dietary tryptophan, with the resistance to liver diseases. However, data supporting IAA-mediated protection against nonalcoholic fatty liver disease (NAFLD) from an in vivo study is lacking. In this study, we assessed the role of IAA in attenuating high-fat diet (HFD)-induced NAFLD in male C57BL/6 mice. Administration of IAA (50 mg/kg body weight) by intraperitoneal injection was found to alleviate HFD-induced elevation in fasting blood glucose and homeostasis model assessment of insulin resistance (HOMA-IR) index as well as plasma total cholesterol, low-density lipoprotein cholesterol (LDL-C), and glutamic-pyruvic transaminase (GPT) activity. Histological examination further presented the protective effect of IAA on liver damage induced by HFD feeding. HFD-induced an increase in liver total triglycerides and cholesterol, together with the upregulation of genes related to lipogenesis including sterol regulatory element binding-protein 1 (Srebf1), steraroyl coenzyme decarboxylase 1 (Scd1), peroxisome proliferator-activated receptor gamma (PPARγ), acetyl-CoA carboxylase 1 (Acaca), and glycerol-3-phosphate acyltransferase, mitochondrial (Gpam), which were mitigated by IAA treatment. The results of reactive oxygen species (ROS) and malonaldehyde (MDA) level along with superoxide dismutase (SOD) activity and glutathione (GSH) content in liver tissue evidenced the protection of IAA against HFD-induced oxidative stress. Additionally, IAA attenuated the inflammatory response of liver in mice exposed to HFD as shown by the reduction in the F4/80-positive macrophage infiltration and the expression of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α). In conclusion, our findings uncover that IAA alleviates HFD-induced hepatotoxicity in mice, which proves to be associated with the amelioration in insulin resistance, lipid metabolism, and oxidative and inflammatory stress.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Gut Microbiota-Derived Tryptophan Metabolites Modulate Inflammatory Response in Hepatocytes and Macrophages

          SUMMARY The gut microbiota plays a significant role in the progression of fatty liver disease; however, the mediators and their mechanisms remain to be elucidated. Comparing metabolite profile differences between germ-free and conventionally raised mice against differences between mice fed a low- and high-fat diet (HFD), we identified tryptamine and indole-3-acetate (I3A) as metabolites that depend on the microbiota and are depleted under a HFD. Both metabolites reduced fatty-acid- and LPS-stimulated production of pro-inflammatory cytokines in macrophages and inhibited the migration of cells toward a chemokine, with I3A exhibiting greater potency. In hepatocytes, I3A attenuated inflammatory responses under lipid loading and reduced the expression of fatty acid synthase and sterol regulatory element-binding protein-1c. These effects were abrogated in the presence of an aryl-hydrocarbon receptor (AhR) antagonist, indicating that the effects are AhR dependent. Our results suggest that gut microbiota could influence inflammatory responses in the liver through metabolites engaging host receptors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis.

            Nonalcoholic fatty liver disease (NAFLD), a hepatic manifestation of metabolic syndrome, is the most common chronic liver disease, and the prevalence is rapidly increasing worldwide. Nonalcoholic steatohepatitis (NASH), the severe form of NAFLD, can progress to liver cirrhosis and hepatocellular carcinoma (HCC). Although noninvasive clinical scores and image-based diagnosis for NAFLD have improved, histopathological evaluation of biopsy specimens remains the gold standard for diagnosing NAFLD/NASH. Steatosis, lobular inflammation, and hepatocellular ballooning are all necessary components for the diagnosis of NASH; fibrosis is also typically observed. Other histopathological abnormalities commonly observed in NASH include hepatocellular glycogenated nuclei, lipogranulomas, and acidophil bodies. The characteristics of pediatric NAFLD/NASH differ from adult NAFLD/NASH. Specifically, steatosis and portal inflammation are more severe in pediatric NAFLD, while intralobular inflammation and perisinusoidal fibrosis are milder. Although interobserver agreement for evaluating the extent of steatosis and fibrosis is high, agreement is low for intralobular and portal inflammation. A recently reported histological variant of HCC, steatohepatitic HCC (SH-HCC), shows features that resemble non-neoplastic steatohepatitis, and is thought to be strongly associated with underlying NASH. In this report, we review the histopathological features of NAFLD/NASH.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Progression from Nonalcoholic Fatty Liver to Nonalcoholic Steatohepatitis Is Marked by a Higher Frequency of Th17 Cells in the Liver and an Increased Th17/Resting Regulatory T Cell Ratio in Peripheral Blood and in the Liver.

              Nonalcoholic fatty liver disease is increasing in prevalence. It can be subdivided into nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). Five to twenty percent of cases progress from NAFL to NASH. Increased hepatic Th17 cells and IL-17 expression were observed in NASH mice and patients, respectively. We analyzed CD4(+) effector T cells and regulatory T cells (Tregs) from peripheral blood and livers of NAFL and NASH patients. A total of 51 NAFL patients, 30 NASH patients, 31 nonalcoholic fatty liver disease patients (without histology), and 43 healthy controls were included. FACS analysis was performed on PBMCs and intrahepatic lymphocytes. Compared with healthy controls, a lower frequency of resting Tregs (rTregs; CD4(+)CD45RA(+)CD25(++)) and higher frequencies of IFN-γ(+) and/or IL-4(+) cells were detected among CD4(+) T cells of peripheral blood in NASH, and to a lesser degree in NAFL. In hepatic tissue, NAFL to NASH progression was marked by an increase in IL-17(+) cells among intrahepatic CD4(+) T cells. To define immunological parameters in peripheral blood to distinguish NAFL from NASH, we calculated different ratios. Th17/rTreg and Th2/rTreg ratios were significantly increased in NASH versus NAFL. The relevance of our findings for NASH pathogenesis was highlighted by the normalization of all of the changes 1 y after bariatric surgery. In conclusion, our data indicate that NAFL patients show changes in their immune cell profile compared with healthy controls. NAFL to NASH progression is marked by an increased frequency of IL-17(+) cells among intrahepatic CD4(+) T cells and higher Th17/rTreg and Th2/rTreg ratios in peripheral blood.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                03 September 2019
                September 2019
                : 11
                : 9
                : 2062
                Affiliations
                Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
                Author notes
                Author information
                https://orcid.org/0000-0002-3483-0729
                https://orcid.org/0000-0001-8791-2798
                Article
                nutrients-11-02062
                10.3390/nu11092062
                6769627
                31484323
                b6aa64ca-b5a8-4ef2-9345-40f316cae5af
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 August 2019
                : 27 August 2019
                Categories
                Article

                Nutrition & Dietetics
                indole-3-acetic acid,nafld,steatosis,oxidative stress,inflammation,lipid metabolism

                Comments

                Comment on this article