6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Individualized Dosing Algorithms and Therapeutic Monitoring for Antiepileptic Drugs

      1 , 2 , 1 , 3 , 4
      Clinical Pharmacology & Therapeutics
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pharmacokinetic (PK) models exist for most antiepileptic drugs (AEDs). Yet their use in clinical practice to assess interindividual differences and derive individualized doses has been limited. Here we show how model-based dosing algorithms can be used to ensure attainment of target exposure and improve treatment response in patients. Using simulations, different treatment scenarios were explored for 11 commonly used AEDs. For each drug, five scenarios were considered: 1) all patients receive the same dose. 2) Individual clearance (CL), as predicted by population PK models, is used to personalize treatment. 3-5) Individual CL, obtained by therapeutic drug monitoring (TDM) according to different sampling schemes, is used to personalize treatment. Attainment of steady-state target exposure was used as the performance criterion to rank each scenario. In contrast to current clinical guidelines, our results show that patient demographic and clinical characteristics should be used in conjunction with TDM to personalize the treatment of seizures.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Managing drug-resistant epilepsy: challenges and solutions

          Despite the development of new antiepileptic drugs (AEDs), ~20%–30% of people with epilepsy remain refractory to treatment and are said to have drug-resistant epilepsy (DRE). This multifaceted condition comprises intractable seizures, neurobiochemical changes, cognitive decline, and psychosocial dysfunction. An ongoing challenge to both researchers and clinicians alike, DRE management is complicated by the heterogeneity among this patient group. The underlying mechanism of DRE is not completely understood. Many hypotheses exist, and relate to both the intrinsic characteristics of the particular epilepsy (associated syndrome/lesion, initial response to AED, and the number and type of seizures prior to diagnosis) and other pharmacological mechanisms of resistance. The four current hypotheses behind pharmacological resistance are the “transporter”, “target”, “network”, and “intrinsic severity” hypotheses, and these are reviewed in this paper. Of equal challenge is managing patients with DRE, and this requires a multidisciplinary approach, involving physicians, surgeons, psychiatrists, neuropsychologists, pharmacists, dietitians, and specialist nurses. Attention to comorbid psychiatric and other diseases is paramount, given the higher prevalence in this cohort and associated poorer health outcomes. Treatment options need to consider the economic burden to the patient and the likelihood of AED compliance and tolerability. Most importantly, higher mortality rates, due to comorbidities, suicide, and sudden death, emphasize the importance of seizure control in reducing this risk. Overall, resective surgery offers the best rates of seizure control. It is not an option for all patients, and there is often a significant delay in referring to epilepsy surgery centers. Optimization of AEDs, identification and treatment of comorbidities, patient education to promote adherence to treatment, and avoidance of triggers should be periodically performed until further insights regarding causative pathology can guide better therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Why has model-informed precision dosing not yet become common clinical reality? lessons from the past and a roadmap for the future.

            Patient groups prone to polypharmacy and special subpopulations are susceptible to suboptimal treatment. Refined dosing in special populations is imperative to improve therapeutic response and/or lowering the risk of toxicity. Model-informed precision dosing (MIPD) may improve treatment outcomes by achieving the optimal dose for an individual patient. There is, however, relatively little published evidence of large-scale utility and impact of MIPD, where it is often implemented as local collaborative efforts between academia and healthcare. This article highlights some successful applications of bringing MIPD to clinical care and proposes strategies for wider integration in healthcare. Considerations are brought up herein that will need addressing to see MIPD become "widespread clinical practice," among those, wider interdisciplinary collaborations and the necessity for further evidence-based efficacy and cost-benefit analysis of MIPD in healthcare. The implications of MIPD on regulatory policies and pharmaceutical development are also discussed as part of the roadmap.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Therapeutic drug monitoring of antiepileptic drugs by use of saliva.

              Blood (serum/plasma) antiepileptic drug (AED) therapeutic drug monitoring (TDM) has proven to be an invaluable surrogate marker for individualizing and optimizing the drug management of patients with epilepsy. Since 1989, there has been an exponential increase in AEDs with 23 currently licensed for clinical use, and recently, there has been renewed and extensive interest in the use of saliva as an alternative matrix for AED TDM. The advantages of saliva include the fact that for many AEDs it reflects the free (pharmacologically active) concentration in serum; it is readily sampled, can be sampled repetitively, and sampling is noninvasive; does not require the expertise of a phlebotomist; and is preferred by many patients, particularly children and the elderly. For each AED, this review summarizes the key pharmacokinetic characteristics relevant to the practice of TDM, discusses the use of other biological matrices with particular emphasis on saliva and the evidence that saliva concentration reflects those in serum. Also discussed are the indications for salivary AED TDM, the key factors to consider when saliva sampling is to be undertaken, and finally, a practical protocol is described so as to enable AED TDM to be applied optimally and effectively in the clinical setting. Overall, there is compelling evidence that salivary TDM can be usefully applied so as to optimize the treatment of epilepsy with carbamazepine, clobazam, ethosuximide, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, phenobarbital, phenytoin, primidone, topiramate, and zonisamide. Salivary TDM of valproic acid is probably not helpful, whereas for clonazepam, eslicarbazepine acetate, felbamate, pregabalin, retigabine, rufinamide, stiripentol, tiagabine, and vigabatrin, the data are sparse or nonexistent.
                Bookmark

                Author and article information

                Journal
                Clinical Pharmacology & Therapeutics
                Clin. Pharmacol. Ther.
                Wiley
                0009-9236
                1532-6535
                September 25 2017
                April 2018
                August 30 2017
                April 2018
                : 103
                : 4
                : 663-673
                Affiliations
                [1 ]Division of PharmacologyLeiden Academic Centre for Drug ResearchLeiden The Netherlands
                [2 ]Department of Pharmaceutical BiosciencesUppsala UniversityUppsala Sweden
                [3 ]Clinical Pharmacology Modelling & SimulationGlaxoSmithKlineUxbridge UK
                [4 ]Clinical Pharmacology and TherapeuticsUniversity College LondonLondon UK
                Article
                10.1002/cpt.777
                28653352
                b68dfa64-a1ec-415c-b2c6-9aef67dace79
                © 2018

                http://creativecommons.org/licenses/by-nc/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article