4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Elucidating the Heterogeneity of Serum Metabolism in Patients with Myelodysplastic Syndrome and Acute Myeloid Leukemia by Raman Spectroscopy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Myelodysplastic syndrome (MDS) is difficult to diagnose and classify because it has the potential to evolve into acute myeloid leukemia (AML). Raman spectroscopy and orthogonal partial least squares discrimination analysis (OPLS-DA) are used to systematically analyze peripheral blood serum samples from 33 patients with MDS, 25 patients with AML, and 29 control volunteers to gain insight into the heterogeneity of serum metabolism in patients with MDS and AML. AML patients show unique serum spectral data compared to MDS patients with considerably greater peak intensities of collagen (859 and 1345 cm –1) and carbohydrate (920 and 1123 cm –1) compared to MDS patients. Screening and bioinformatics analysis of MDS- and AML-related genes based on the Gene Expression Omnibus (GEO) database shows that 1459 genes are differentially expressed, and the main signaling pathways are related to Th17 cell differentiation, pertussis, and cytokine receptor interaction. Statistical analysis of serological indexes related to glucose and lipid metabolism shows that patients with AML have increased serum triglyceride (TG) levels and decreased total protein levels. This study provides a spectral basis for the relationship between the massive serological data of patients and the typing of MDS and AML and provides important information for the rapid and early identification of MDS and AML.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Genetics of MDS

          Our knowledge about the genetics of myelodysplastic syndromes (MDS) and related myeloid disorders has been dramatically improved during the past decade, in which revolutionized sequencing technologies have played a major role. Through intensive efforts of sequencing of a large number of MDS genomes, a comprehensive registry of driver mutations recurrently found in a recognizable fraction of MDS patients has been revealed, and ongoing efforts are being made to clarify their impacts on clinical phenotype and prognosis, as well as their role in the pathogenesis of MDS. Among major mutational targets in MDS are the molecules involved in DNA methylations, chromatin modification, RNA splicing, transcription, signal transduction, cohesin regulation, and DNA repair. Showing substantial overlaps with driver mutations seen in acute myeloid leukemia (AML), as well as age-related clonal hematopoiesis in healthy individuals, these mutations are presumed to have a common clonal origin. Mutations are thought to be acquired and positively selected in a well-organized manner to allow for expansion of the initiating clone to compromise normal hematopoiesis, ultimately giving rise to MDS and subsequent transformation to AML in many patients. Significant correlations between mutations suggest the presence of functional interactions between mutations, which dictate disease progression. Mutations are frequently associated with specific disease phenotype, drug response, and clinical outcomes, and thus, it is essential to be familiar with MDS genetics for better management of patients. This review aims to provide a brief overview of the recent progresses in MDS genetics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bioactivities of phytochemicals present in tomato

            Tomato is a wonder fruit fortified with health-promoting phytochemicals that are beneficial in preventing important chronic degenerative disorders. Tomato is a good source of phenolic compounds (phenolic acids and flavonoids), carotenoids (lycopene, α, and β carotene), vitamins (ascorbic acid and vitamin A) and glycoalkaloids (tomatine). Bioactive constituents present in tomato have antioxidant, anti-mutagenic, anti-proliferative, anti-inflammatory and anti-atherogenic activities. Health promoting bioactivities of tomatoes make them useful ingredient for the development of functional foods. Protective role of tomato (lycopene as a potent antioxidant) in humans against various degenerative diseases are known throughout the world. Intake of tomato is inversely related to the incidence of cancer, cardiovascular diseases, ageing and many other health problems. Bioavailability of phytoconstituents in tomato is generally not affected by routine cooking processes making it even more beneficial for human consumption. The present review provides collective information of phytochemicals in tomato along with discussing their bioactivities and possible health benefits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Myelodysplastic Syndromes: 2021 update on Diagnosis, Risk‐stratification and Management

              The myelodysplastic syndromes (MDS) are a very heterogeneous group of myeloid disorders characterized by peripheral blood cytopenias and increased risk of transformation to acute myelogenous leukemia (AML). Myelodysplastic syndromes occur more frequently in older males and in individuals with prior exposure to cytotoxic therapy.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                06 December 2022
                20 December 2022
                : 7
                : 50
                : 47056-47069
                Affiliations
                []State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300020, China
                []Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital , Tianjin 300052, China
                Author notes
                Author information
                https://orcid.org/0000-0002-3766-7605
                Article
                10.1021/acsomega.2c06170
                9773805
                36570283
                b68cc5a0-10b7-4850-b91d-88f42f2ab48f
                © 2022 The Authors. Published by American Chemical Society

                Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 23 September 2022
                : 21 November 2022
                Funding
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                Award ID: 81970120
                Funded by: Tianjin Municipal Bureau of Public Health, doi 10.13039/501100010590;
                Award ID: TJYXZDXK-006A
                Funded by: Chinese Academy of Medical Sciences, doi 10.13039/501100005150;
                Award ID: 2022-I2M-JB-015
                Categories
                Article
                Custom metadata
                ao2c06170
                ao2c06170

                Comments

                Comment on this article