Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of efficacy of SHENQI compound and rosiglitazone in the treatment of diabetic vasculopathy analyzing multi-factor mediated disease-causing modules

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atherosclerosis-predominant vasculopathy is a common complication of diabetes with high morbidity and high mortality, which is ruining the patient's daily life. As is known to all, traditional Chinese medicine (TCM) SHENQI compound and western medicine rosiglitazone play an important role in the treatment of diabetes. In particular, SHENQI compound has a significant inhibitory effect on vascular lesions. Here, to explore and compare the therapeutic mechanism of SHENQI compound and rosiglitazone on diabetic vasculopathy, we first built 7 groups of mouse models. The behavioral, physiological and pathological morphological characteristics of these mice showed that SHENQI compound has a more comprehensive curative effect than rosiglitazone and has a stronger inhibitory effect on vascular lesions. While rosiglitazone has a more effective but no significant effect on hypoglycemic. Further, based on the gene expression of mice in each group, we performed differential expression analysis. The functional enrichment analysis of these differentially expressed genes (DEGs) revealed the potential pathogenesis and treatment mechanisms of diabetic angiopathy. In addition, we found that SHENQI compound mainly exerts comprehensive effects by regulating MCM8, IRF7, CDK7, NEDD4L by pivot regulator analysis, while rosiglitazone can rapidly lower blood glucose levels by targeting PSMD3, UBA52. Except that, we also identified some pivot TFs and ncRNAs for these potential disease-causing DEG modules, which may the mediators bridging drugs and modules. Finally, similar to pivot regulator analysis, we also identified the regulation of some drugs (e.g. bumetanide, disopyramide and glyburide etc.) which have been shown to have a certain effect on diabetes or diabetic angiopathy, proofing the scientific and objectivity of this study. Overall, this study not only provides an in-depth comparison of the efficacy of SHENQI compound and rosiglitazone in the treatment of diabetic vasculopathy, but also provides clinicians and drug designers with valuable theoretical guidance.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Linear models and empirical bayes methods for assessing differential expression in microarray experiments.

          The problem of identifying differentially expressed genes in designed microarray experiments is considered. Lonnstedt and Speed (2002) derived an expression for the posterior odds of differential expression in a replicated two-color experiment using a simple hierarchical parametric model. The purpose of this paper is to develop the hierarchical model of Lonnstedt and Speed (2002) into a practical approach for general microarray experiments with arbitrary numbers of treatments and RNA samples. The model is reset in the context of general linear models with arbitrary coefficients and contrasts of interest. The approach applies equally well to both single channel and two color microarray experiments. Consistent, closed form estimators are derived for the hyperparameters in the model. The estimators proposed have robust behavior even for small numbers of arrays and allow for incomplete data arising from spot filtering or spot quality weights. The posterior odds statistic is reformulated in terms of a moderated t-statistic in which posterior residual standard deviations are used in place of ordinary standard deviations. The empirical Bayes approach is equivalent to shrinkage of the estimated sample variances towards a pooled estimate, resulting in far more stable inference when the number of arrays is small. The use of moderated t-statistics has the advantage over the posterior odds that the number of hyperparameters which need to estimated is reduced; in particular, knowledge of the non-null prior for the fold changes are not required. The moderated t-statistic is shown to follow a t-distribution with augmented degrees of freedom. The moderated t inferential approach extends to accommodate tests of composite null hypotheses through the use of moderated F-statistics. The performance of the methods is demonstrated in a simulation study. Results are presented for two publicly available data sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            miR-200a Prevents Renal Fibrogenesis Through Repression of TGF-β2 Expression

            OBJECTIVE Progressive fibrosis in the diabetic kidney is driven and sustained by a diverse range of profibrotic factors. This study examines the critical role of microRNAs (miRNAs) in the regulation of the key fibrotic mediators, TGF-β1 and TGF-β2. RESEARCH DESIGN AND METHODS Rat proximal-tubular epithelial cells (NRK52E) were treated with TGF-β1 and TGF-β2 for 3 days, and expression of markers of epithelial-to-mesenchymal transition (EMT) and fibrogenesis were assessed by RT-PCR and Western blotting. The expression of miR-141 and miR-200a was also assessed, as was their role as translational repressors of TGF-β signaling. Finally, these pathways were explored in two different mouse models, representing early and advanced diabetic nephropathy. RESULTS Both TGF-β1 and TGF-β2 induced EMT and fibrogenesis in NRK52E cells. TGF-β1 and TGF-β2 also downregulated expression of miR-200a. The importance of these changes was demonstrated by the finding that ectopic expression miR-200a downregulated smad-3 activity and the expression of matrix proteins and prevented TGF-β–dependent EMT. miR-200a also downregulated the expression of TGF-β2, via direct interaction with the 3′ untranslated region of TGF-β2. The renal expression of miR-141 and miR-200a was also reduced in mouse models representing early and advanced kidney disease. CONCLUSIONS miR-200a and miR-141 significantly impact on the development and progression of TGF-β–dependent EMT and fibrosis in vitro and in vivo. These miRNAs appear to be intricately involved in fibrogenesis, both as downstream mediators of TGF-β signaling and as components of feedback regulation, and as such represent important new targets for the prevention of progressive kidney disease in the context of diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              RAID v2.0: an updated resource of RNA-associated interactions across organisms

              With the development of biotechnologies and computational prediction algorithms, the number of experimental and computational prediction RNA-associated interactions has grown rapidly in recent years. However, diverse RNA-associated interactions are scattered over a wide variety of resources and organisms, whereas a fully comprehensive view of diverse RNA-associated interactions is still not available for any species. Hence, we have updated the RAID database to version 2.0 (RAID v2.0, www.rna-society.org/raid/) by integrating experimental and computational prediction interactions from manually reading literature and other database resources under one common framework. The new developments in RAID v2.0 include (i) over 850-fold RNA-associated interactions, an enhancement compared to the previous version; (ii) numerous resources integrated with experimental or computational prediction evidence for each RNA-associated interaction; (iii) a reliability assessment for each RNA-associated interaction based on an integrative confidence score; and (iv) an increase of species coverage to 60. Consequently, RAID v2.0 recruits more than 5.27 million RNA-associated interactions, including more than 4 million RNA–RNA interactions and more than 1.2 million RNA–protein interactions, referring to nearly 130 000 RNA/protein symbols across 60 species.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Software
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Project administrationRole: ResourcesRole: SoftwareRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draft
                Role: Formal analysisRole: SoftwareRole: Writing – review & editing
                Role: ConceptualizationRole: VisualizationRole: Writing – review & editing
                Role: Formal analysisRole: VisualizationRole: Writing – review & editing
                Role: ValidationRole: Writing – original draftRole: Writing – review & editing
                Role: Formal analysisRole: Writing – review & editing
                Role: ConceptualizationRole: Project administration
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                6 December 2018
                2018
                : 13
                : 12
                : e0207683
                Affiliations
                [1 ] Teaching Hospital, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
                [2 ] Department Two of Endocrinology, Teaching Hospital, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
                Harbin Medical University, CHINA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                ‡ These authors are first authors on this work.

                Author information
                http://orcid.org/0000-0002-3050-6462
                http://orcid.org/0000-0002-3796-4116
                http://orcid.org/0000-0003-1089-8013
                http://orcid.org/0000-0002-0153-9986
                http://orcid.org/0000-0002-1949-8430
                http://orcid.org/0000-0001-7183-3139
                http://orcid.org/0000-0001-8002-1677
                http://orcid.org/0000-0002-1038-9545
                Article
                PONE-D-18-22736
                10.1371/journal.pone.0207683
                6283585
                30521536
                b5e4bf60-6f52-4297-a86d-289dac8bc992
                © 2018 Gao et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 August 2018
                : 5 November 2018
                Page count
                Figures: 7, Tables: 1, Pages: 18
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81102589
                Award Recipient :
                This work was supported by National Natural Science Foundation of China ( http://www.nsfc.gov.cn/) (81102589 to H.G.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine and Health Sciences
                Endocrinology
                Endocrine Disorders
                Diabetes Mellitus
                Medicine and Health Sciences
                Metabolic Disorders
                Diabetes Mellitus
                Biology and Life Sciences
                Genetics
                Gene Expression
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Blood
                Blood Sugar
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Blood
                Blood Sugar
                Biology and Life Sciences
                Physiology
                Body Fluids
                Blood
                Blood Sugar
                Medicine and Health Sciences
                Physiology
                Body Fluids
                Blood
                Blood Sugar
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Epithelial Cells
                Endothelial Cells
                Biology and Life Sciences
                Anatomy
                Biological Tissue
                Epithelium
                Epithelial Cells
                Endothelial Cells
                Medicine and Health Sciences
                Anatomy
                Biological Tissue
                Epithelium
                Epithelial Cells
                Endothelial Cells
                Biology and Life Sciences
                Genetics
                Gene Types
                Regulator Genes
                Medicine and health sciences
                Complementary and alternative medicine
                Traditional medicine
                Traditional Chinese medicine
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Vertebrates
                Amniotes
                Mammals
                Rodents
                Mice
                Medicine and Health Sciences
                Pharmaceutics
                Drug Therapy
                Custom metadata
                All relevant data are within the manuscript and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content557

                Cited by9

                Most referenced authors1,011