6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TC2N, a novel oncogene, accelerates tumor progression by suppressing p53 signaling pathway in lung cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The protein containing the C2 domain has been well documented for its essential roles in endocytosis, cellular metabolism and cancer. Tac2-N (TC2N) is a tandem C2 domain-containing protein, but its function, including its role in tumorigenesis, remains unknown. Here, we first identified TC2N as a novel oncogene in lung cancer. TC2N was preferentially upregulated in lung cancer tissues compared with adjacent normal lung tissues. High TC2N expression was significantly associated with poor outcome of lung cancer patients. Knockdown of TC2N markedly induces cell apoptosis and cell cycle arrest with repressing proliferation in vitro, and suppresses tumorigenicity in vivo, whereas overexpression of TC2N has the opposite effects both in vitro and in vivo. Using a combination of TCGA database and bioinformatics, we demonstrate that TC2N is involved in regulation of the p53 signaling pathway. Mechanistically, TC2N attenuates p53 signaling pathway through inhibiting Cdk5-induced phosphorylation of p53 via inducing Cdk5 degradation or disrupting the interaction between Cdk5 and p53. Moreover, the blockade of p53 attenuates the function of TC2N knockdown in the regulation of cell proliferation and apoptosis. In addition, downregulated TC2N is involved in the apoptosis of lung cancer cells induced by doxorubicin, leading to p53 pathway activation. Overall, these findings uncover a role for the p53 inactivator TC2N in regulating the proliferation and apoptosis of lung cancer cells. Our present study provides novel insights into the mechanism of tumorigenesis in lung cancer.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Mdm2 promotes the rapid degradation of p53.

          The p53 tumour-suppressor protein exerts antiproliferative effects, including growth arrest and apoptosis, in response to various types of stress. The activity of p53 is abrogated by mutations that occur frequently in tumours, as well as by several viral and cellular proteins. The Mdm2 oncoprotein is a potent inhibitor of p53. Mdm2 binds the transcriptional activation domain of p53 and blocks its ability to regulate target genes and to exert antiproliferative effects. On the other hand, p53 activates the expression of the mdm2 gene in an autoregulatory feedback loop. The interval between p53 activation and consequent Mdm2 accumulation defines a time window during which p53 exerts its effects. We now report that Mdm2 also promotes the rapid degradation of p53 under conditions in which p53 is otherwise stabilized. This effect of Mdm2 requires binding of p53; moreover, a small domain of p53, encompassing the Mdm2-binding site, confers Mdm2-dependent detstabilization upon heterologous proteins. Raised amounts of Mdm2 strongly repress mutant p53 accumulation in tumour-derived cells. During recovery from DNA damage, maximal Mdm2 induction coincides with rapid p53 loss. We propose that the Mdm2-promoted degradation of p53 provides a new mechanism to ensure effective termination of the p53 signal.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis.

            A critical function of tumor suppressor p53 is the induction of apoptosis in cells exposed to noxious stresses. We report a previously unidentified pro-apoptotic gene, Noxa. Expression of Noxa induction in primary mouse cells exposed to x-ray irradiation was dependent on p53. Noxa encodes a Bcl-2 homology 3 (BH3)-only member of the Bcl-2 family of proteins; this member contains the BH3 region but not other BH domains. When ectopically expressed, Noxa underwent BH3 motif-dependent localization to mitochondria and interacted with anti-apoptotic Bcl-2 family members, resulting in the activation of caspase-9. We also demonstrate that blocking the endogenous Noxa induction results in the suppression of apoptosis. Noxa may thus represent a mediator of p53-dependent apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tumor suppressor p53 is a direct transcriptional activator of the human bax gene.

              The bax gene promoter region contains four motifs with homology to consensus p53-binding sites. In cotransfection assays using p53-deficient tumor cell lines, wild-type but not mutant p53 expression plasmids transactivated a reporter gene plasmid that utilized the bax gene promoter to drive transcription of chloramphenicol acetyltransferase. In addition, wild-type p53 transactivated reporter gene constructs containing a heterologous minimal promoter and a 39-bp region from the bax gene promoter in which the p53-binding site consensus sequences reside. Introduction of mutations into the consensus p53-binding site sequences abolished p53 responsiveness of reporter gene plasmids. Wild-type but not mutant p53 protein bound to oligonucleotides corresponding to this region of the bax promoter, based on gel retardation assays. Taken together, the results suggest that bax is a p53 primary-response gene, presumably involved in a p53-regulated pathway for induction of apoptosis.
                Bookmark

                Author and article information

                Contributors
                caojia1962@126.com
                +86 23 68771527 , jinyiliutmmu@163.com
                Journal
                Cell Death Differ
                Cell Death Differ
                Cell Death and Differentiation
                Nature Publishing Group UK (London )
                1350-9047
                1476-5403
                25 September 2018
                25 September 2018
                July 2019
                : 26
                : 7
                : 1235-1250
                Affiliations
                ISNI 0000 0004 1760 6682, GRID grid.410570.7, Institute of Toxicology, College of Preventive Medicine, , Third Military Medical University, ; Chongqing, 400038 China
                Author information
                http://orcid.org/0000-0002-7583-8233
                http://orcid.org/0000-0003-1803-7752
                Article
                202
                10.1038/s41418-018-0202-8
                6748156
                30254375
                b5ca2f73-98b5-411f-8e34-0ca3cf4e5a6a
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 December 2017
                : 1 August 2018
                : 30 August 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 81773461
                Award ID: 81573179
                Award Recipient :
                Categories
                Article
                Custom metadata
                © ADMC Associazione Differenziamento e Morte Cellulare 2019

                Cell biology
                oncogenes,non-small-cell lung cancer
                Cell biology
                oncogenes, non-small-cell lung cancer

                Comments

                Comment on this article