14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The landscape of the mesenchymal signature in brain tumours

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although gliomas are thought to arise from a neural-glial lineage of ectodermal origin, many gliomas express a mesenchymal signature. Behnan et al. review the origins of this signature in glioma: it may arise via the tumour stroma, via NF1-mutation in tumour cells and be influenced by the cell of origin, or arise in response to radiotherapy/chemotherapy/anti-angiogenic treatment.

          Abstract

          The complexity of glioblastoma multiforme, the most common and lethal variant of gliomas, is reflected by cellular and molecular heterogeneity at both the inter- and intra-tumoural levels. Molecular subtyping has arisen in the past two decades as a promising strategy to give better predictions of glioblastoma multiforme evolution, common disease pathways, and rational treatment options. The Cancer Genome Atlas network initially identified four molecular subtypes of glioblastoma multiforme: proneural, neural, mesenchymal and classical. However, further studies, also investigated glioma stem cells, have only identified two to three subtypes: proneural, mesenchymal and classical. The proneural–mesenchymal transition upon tumour recurrence has been suggested as a mechanism of tumour resistance to radiation and chemotherapy treatment. Glioblastoma multiforme patients with the mesenchymal subtype tend to survive shorter than other subtypes when analysis is restricted to samples with low transcriptional heterogeneity. Although the mesenchymal signature in malignant glioma may seem at odds with the common idea of the ectodermal origin of neural-glial lineages, the presence of the mesenchymal signature in glioma is supported by several studies suggesting that it can result from: (i) intrinsic expression of tumour cells affected with accumulated genetic mutations and cell of origin; (ii) tumour micro-environments with recruited macrophages or microglia, mesenchymal stem cells or pericytes, and other progenitors; (iii) resistance to tumour treatment, including radiotherapy, antiangiogenic therapy and possibly chemotherapy. Genetic abnormalities, mainly NF1 mutations, together with NF-κB transcriptional programs, are the main driver of acquiring mesenchymal-signature. This signature is far from being simply tissue artefacts, as it has been identified in single cell glioma, circulating tumour cells, and glioma stem cells that are released from the tumour micro-environment. All these together suggest that the mesenchymal signature in glioblastoma multiforme is induced and sustained via cell intrinsic mechanisms and tumour micro-environment factors. Although patients with the mesenchymal subtype tend to have poorer prognosis, they may have favourable response to immunotherapy and intensive radio- and chemotherapy.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis.

          Previously undescribed prognostic subclasses of high-grade astrocytoma are identified and discovered to resemble stages in neurogenesis. One tumor class displaying neuronal lineage markers shows longer survival, while two tumor classes enriched for neural stem cell markers display equally short survival. Poor prognosis subclasses exhibit markers either of proliferation or of angiogenesis and mesenchyme. Upon recurrence, tumors frequently shift toward the mesenchymal subclass. Chromosomal locations of genes distinguishing tumor subclass parallel DNA copy number differences between subclasses. Functional relevance of tumor subtype molecular signatures is suggested by the ability of cell line signatures to predict neurosphere growth. A robust two-gene prognostic model utilizing PTEN and DLL3 expression suggests that Akt and Notch signaling are hallmarks of poor prognosis versus better prognosis gliomas, respectively.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A restricted cell population propagates glioblastoma growth following chemotherapy

            Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor, with a median survival of about one year 1 . This poor prognosis is due to therapeutic resistance and tumor recurrence following surgical removal. Precisely how recurrence occurs is unknown. Using a genetically-engineered mouse model of glioma, we identify a subset of endogenous tumor cells that are the source of new tumor cells after the drug, temozolomide (TMZ), is administered to transiently arrest tumor growth. A Nestin-ΔTK-IRES-GFP (Nes-ΔTK-GFP) transgene that labels quiescent subventricular zone adult neural stem cells also labels a subset of endogenous glioma tumor cells. Upon arrest of tumor cell proliferation with TMZ, pulse-chase experiments demonstrate a tumor re-growth cell hierarchy originating with the Nes-ΔTK-GFP transgene subpopulation. Ablation of the GFP+ cells with chronic ganciclovir administration significantly arrested tumor growth and combined TMZ-ganciclovir treatment impeded tumor development. These data indicate the existence of a relatively quiescent subset of endogenous glioma cells that are responsible for sustaining long-term tumor growth through the production of transient populations of highly proliferative cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The clonal evolution of tumor cell populations.

              P C Nowell (1976)
              It is proposed that most neoplasms arise from a single cell of origin, and tumor progression results from acquired genetic variability within the original clone allowing sequential selection of more aggressive sublines. Tumor cell populations are apparently more genetically unstable than normal cells, perhaps from activation of specific gene loci in the neoplasm, continued presence of carcinogen, or even nutritional deficiencies within the tumor. The acquired genetic insta0ility and associated selection process, most readily recognized cytogenetically, results in advanced human malignancies being highly individual karyotypically and biologically. Hence, each patient's cancer may require individual specific therapy, and even this may be thwarted by emergence of a genetically variant subline resistant to the treatment. More research should be directed toward understanding and controlling the evolutionary process in tumors before it reaches the late stage usually seen in clinical cancer.
                Bookmark

                Author and article information

                Journal
                Brain
                Brain
                brainj
                Brain
                Oxford University Press
                0006-8950
                1460-2156
                April 2019
                29 March 2019
                29 March 2019
                : 142
                : 4
                : 847-866
                Affiliations
                [1 ]Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
                [2 ]Duke Preclinical Translational Unit, Duke University Medical Center, Durham, North Carolina
                [3 ]Unit of Molecular Neuro-Oncology, Neurological Institute C. Besta, Milan, Italy
                Author notes
                Correspondence to: Jinan Behnan Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology Karolinska Institutet, 17177 Stockholm, Sweden E-mail: jinan.behnan@ 123456ki.se ; jinan_bahnan@ 123456hotmail.com
                Article
                awz044
                10.1093/brain/awz044
                6485274
                30946477
                b5c9d093-51d3-43fe-87f4-8939ef97165e
                © The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 19 September 2018
                : 7 January 2019
                : 09 January 2019
                Page count
                Pages: 20
                Funding
                Funded by: Knut and Alice Wallenbergs Foundation
                Categories
                Review Article

                Neurosciences
                glioma,mesenchymal subtype,subtype origin,tumor microenvironment,proneural-mesenchymal transition

                Comments

                Comment on this article