14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A computer-aided diagnostic framework for coronavirus diagnosis using texture-based radiomics images

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The accurate and rapid detection of the novel coronavirus infection, coronavirus is very important to prevent the fast spread of such disease. Thus, reducing negative effects that influenced many industrial sectors, especially healthcare. Artificial intelligence techniques in particular deep learning could help in the fast and precise diagnosis of coronavirus from computed tomography images. Most artificial intelligence-based studies used the original computed tomography images to build their models; however, the integration of texture-based radiomics images and deep learning techniques could improve the diagnostic accuracy of the novel coronavirus diseases. This study proposes a computer-assisted diagnostic framework based on multiple deep learning and texture-based radiomics approaches. It first trains three Residual Networks (ResNets) deep learning techniques with two texture-based radiomics images including discrete wavelet transform and gray-level covariance matrix instead of the original computed tomography images. Then, it fuses the texture-based radiomics deep features sets extracted from each using discrete cosine transform. Thereafter, it further combines the fused texture-based radiomics deep features obtained from the three convolutional neural networks. Finally, three support vector machine classifiers are utilized for the classification procedure. The proposed method is validated experimentally on the benchmark severe respiratory syndrome coronavirus 2 computed tomography image dataset. The accuracies attained indicate that using texture-based radiomics (gray-level covariance matrix, discrete wavelet transform) images for training the ResNet-18 (83.22%, 74.9%), ResNet-50 (80.94%, 78.39%), and ResNet-101 (80.54%, 77.99%) is better than using the original computed tomography images (70.34%, 76.51%, and 73.42%) for ResNet-18, ResNet-50, and ResNet-101, respectively. Furthermore, the sensitivity, specificity, accuracy, precision, and F1-score achieved using the proposed computer-assisted diagnostic after the two fusion steps are 99.47%, 99.72%, 99.60%, 99.72%, and 99.60% which proves that combining texture-based radiomics deep features obtained from the three ResNets has boosted its performance. Thus, fusing multiple texture-based radiomics deep features mined from several convolutional neural networks is better than using only one type of radiomics approach and a single convolutional neural network. The performance of the proposed computer-assisted diagnostic framework allows it to be used by radiologists in attaining fast and accurate diagnosis.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Deep Residual Learning for Image Recognition

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Plasma Hsp90 levels in patients with systemic sclerosis and relation to lung and skin involvement: a cross-sectional and longitudinal study

              Our previous study demonstrated increased expression of Heat shock protein (Hsp) 90 in the skin of patients with systemic sclerosis (SSc). We aimed to evaluate plasma Hsp90 in SSc and characterize its association with SSc-related features. Ninety-two SSc patients and 92 age-/sex-matched healthy controls were recruited for the cross-sectional analysis. The longitudinal analysis comprised 30 patients with SSc associated interstitial lung disease (ILD) routinely treated with cyclophosphamide. Hsp90 was increased in SSc compared to healthy controls. Hsp90 correlated positively with C-reactive protein and negatively with pulmonary function tests: forced vital capacity and diffusing capacity for carbon monoxide (DLCO). In patients with diffuse cutaneous (dc) SSc, Hsp90 positively correlated with the modified Rodnan skin score. In SSc-ILD patients treated with cyclophosphamide, no differences in Hsp90 were found between baseline and after 1, 6, or 12 months of therapy. However, baseline Hsp90 predicts the 12-month change in DLCO. This study shows that Hsp90 plasma levels are increased in SSc patients compared to age-/sex-matched healthy controls. Elevated Hsp90 in SSc is associated with increased inflammatory activity, worse lung functions, and in dcSSc, with the extent of skin involvement. Baseline plasma Hsp90 predicts the 12-month change in DLCO in SSc-ILD patients treated with cyclophosphamide.
                Bookmark

                Author and article information

                Journal
                Digit Health
                Digit Health
                DHJ
                spdhj
                Digital Health
                SAGE Publications (Sage UK: London, England )
                2055-2076
                11 April 2022
                Jan-Dec 2022
                : 8
                : 20552076221092543
                Affiliations
                [1 ]Department of Electronics and Communications Engineering, College of Engineering and Technology, Ringgold 68876, universityArab Academy for Science; , Technology and Maritime Transport, Alexandria, Egypt
                Author notes
                [*]Omneya Attallah, Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt Email: o.attallah@ 123456aast.edu
                Author information
                https://orcid.org/0000-0002-2657-2264
                Article
                10.1177_20552076221092543
                10.1177/20552076221092543
                9005822
                35433024
                b5af31a7-81c6-4d59-9575-95bb1e77326f
                © The Author(s) 2022

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License ( https://creativecommons.org/licenses/by-nc-nd/4.0/) which permits non-commercial use, reproduction and distribution of the work as published without adaptation or alteration, without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 16 January 2022
                : 21 March 2022
                Categories
                Special Collection on Covid-19
                Custom metadata
                ts19
                January-December 2022

                coronavirus diagnosis,deep learning,convolutional neural networks,discrete wavelet transform,gray-level covariance matrix,radiomics

                Comments

                Comment on this article