705
views
0
recommends
+1 Recommend
0 collections
    16
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Distinct Recycling of Active and Inactive β1 Integrins

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Integrin trafficking plays an important role in cellular motility and cytokinesis. Integrins undergo constant endo/exocytic shuttling to facilitate the dynamic regulation of cell adhesion. Integrin activity toward the components of the extracellular matrix is regulated by the ability of these receptors to switch between active and inactive conformations. Several cellular signalling pathways have been described in the regulation of integrin traffic under different conditions. However, the interrelationship between integrin activity conformations and their endocytic fate have remained incompletely understood. Here, we have investigated the endocytic trafficking of active and inactive β1 integrins in cancer cells. Both conformers are endocytosed in a clathrin- and dynamin-dependent manner. The net endocytosis rate of the active β1 integrins is higher, whereas endocytosis of the inactive β1 integrin is counteracted by rapid recycling back to the plasma membrane via an ARF 6- and early endosome antigen 1-positive compartment in an Rab 4a- and actin-dependent manner. Owing to these distinct trafficking routes, the two receptor pools display divergent subcellular localization. At steady state, the inactive β1 integrin is mainly on the plasma membrane, whereas the active receptor is predominantly intracellular. These data provide new insights into the endocytic traffic of integrins and imply the possibility of a previously unappreciated crosstalk between pathways regulating integrin activity and traffic.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness.

          Migration of cells in higher organisms is mediated by adhesion receptors, such as integrins, that link the cell to extracellular-matrix ligands, transmitting forces and signals necessary for locomotion. Whether cells will migrate or not on a given substratum, and also their speed, depends on several variables related to integrin-ligand interactions, including ligand levels, integrin levels, and integrin-ligand binding affinities. These and other factors affect the way molecular systems integrate to effect and regulate cell migration. Here we show that changes in cell migration speed resulting from three separate variables-substratum ligand level, cell integrin expression level, and integrin-ligand binding affinity-are all quantitatively predictable through the changes they cause in a single unifying parameter: short-term cell-substratum adhesion strength. This finding is consistent with predictions of a mathematical model for cell migration. The ligand concentration promoting maximum migration speed decreases reciprocally as integrin expression increases. Increases in integrin-ligand affinity similarly result in maximal migration at reciprocally lower ligand concentrations. The maximum speed attainable, however, remains unchanged as ligand concentration, integrin expression, or integrin-ligand affinity vary, suggesting that integrin coupling with intracellular motors remains unaltered.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Kindlin-3 is essential for integrin activation and platelet aggregation.

            Integrin-mediated platelet adhesion and aggregation are essential for sealing injured blood vessels and preventing blood loss, and excessive platelet aggregation can initiate arterial thrombosis, causing heart attacks and stroke. To ensure that platelets aggregate only at injury sites, integrins on circulating platelets exist in a low-affinity state and shift to a high-affinity state (in a process known as integrin activation or priming) after contacting a wounded vessel. The shift is mediated through binding of the cytoskeletal protein Talin to the beta subunit cytoplasmic tail. Here we show that platelets lacking the adhesion plaque protein Kindlin-3 cannot activate integrins despite normal Talin expression. As a direct consequence, Kindlin-3 deficiency results in severe bleeding and resistance to arterial thrombosis. Mechanistically, Kindlin-3 can directly bind to regions of beta-integrin tails distinct from those of Talin and trigger integrin activation. We have therefore identified Kindlin-3 as a novel and essential element for platelet integrin activation in hemostasis and thrombosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments.

              Here, we report a direct interaction between the beta1 integrin cytoplasmic tail and Rab25, a GTPase that has been linked to tumor aggressiveness and metastasis. Rab25 promotes a mode of migration on 3D matrices that is characterized by the extension of long pseudopodia, and the association of the GTPase with alpha5beta1 promotes localization of vesicles that deliver integrin to the plasma membrane at pseudopodial tips as well as the retention of a pool of cycling alpha5beta1 at the cell front. Furthermore, Rab25-driven tumor-cell invasion into a 3D extracellular matrix environment is strongly dependent on ligation of fibronectin by alpha5beta1 integrin and the capacity of Rab25 to interact with beta1 integrin. These data indicate that Rab25 contributes to tumor progression by directing the localization of integrin-recycling vesicles and thereby enhancing the ability of tumor cells to invade the extracellular matrix.
                Bookmark

                Author and article information

                Journal
                Traffic
                Traffic
                tra
                Traffic (Copenhagen, Denmark)
                John Wiley & Sons A/S
                1398-9219
                1600-0854
                April 2012
                31 January 2012
                : 13
                : 4
                : 610-625
                Affiliations
                [1 ]Medical Biotechnology VTT Technical Research Centre of Finland Turku 20521 Finland
                [2 ]Centre for Biotechnology University of Turku Turku 20520 Finland
                [3 ]Department of Biochemistry and Food Chemistry University of Turku Turku 20520 Finland
                Author notes
                * Corresponding author: Johanna Ivaska, johanna.ivaska@ 123456vtt.fi

                Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://wileyonlinelibrary.com/onlineopen#OnlineOpen_Terms

                Article
                10.1111/j.1600-0854.2012.01327.x
                3531618
                22222055
                b597acde-c182-4154-b566-39fb016a2a54
                © 2012 John Wiley & Sons A/S

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 05 July 2011
                : 03 January 2012
                Categories
                Original Articles

                Sociology
                trafficking,endocytosis,conformation,integrin,recycling
                Sociology
                trafficking, endocytosis, conformation, integrin, recycling

                Comments

                Comment on this article