6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Apoptosis Induction byHistone Deacetylase Inhibitors in Cancer Cells: Role of Ku70

      review-article
      , , *
      International Journal of Molecular Sciences
      MDPI
      HDAC inhibitors, Ku70, apoptosis, Bax, c-FLIP, cancer

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Histone deacetylases (HDACs) are a group of enzymes that regulate gene transcription by controlling deacetylation of histones and non-histone proteins. Overexpression of HDACs is found in some types of tumors and predicts poor prognosis. Five HDAC inhibitors are approved for the treatment of cutaneous T-cell lymphoma, peripheral T-cell lymphoma, and multiple myeloma. Treatment with HDAC inhibitors regulates gene expression with increased acetylated histones with unconfirmed connection with therapy. Apoptosis is a key mechanism by which HDAC inhibitors selectively kill cancer cells, probably due to acetylation of non-histone proteins. Ku70 is a protein that repairs DNA breaks and stabilizes anti-apoptotic protein c-FLIP and proapoptotic protein Bax, which is regulated by acetylation. HDAC inhibitors induce Ku70 acetylation with repressed c-FLIP and activated Bax in cancer cells. Current studies indicate that Ku70 is a potential target of HDAC inhibitors and plays an important role during the induction of apoptosis.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders.

          Recent studies have indicated that the regulation of innate immunity and energy metabolism are connected together through an antagonistic crosstalk between NF-κB and SIRT1 signaling pathways. NF-κB signaling has a major role in innate immunity defense while SIRT1 regulates the oxidative respiration and cellular survival. However, NF-κB signaling can stimulate glycolytic energy flux during acute inflammation, whereas SIRT1 activation inhibits NF-κB signaling and enhances oxidative metabolism and the resolution of inflammation. SIRT1 inhibits NF-κB signaling directly by deacetylating the p65 subunit of NF-κB complex. SIRT1 stimulates oxidative energy production via the activation of AMPK, PPARα and PGC-1α and simultaneously, these factors inhibit NF-κB signaling and suppress inflammation. On the other hand, NF-κB signaling down-regulates SIRT1 activity through the expression of miR-34a, IFNγ, and reactive oxygen species. The inhibition of SIRT1 disrupts oxidative energy metabolism and stimulates the NF-κB-induced inflammatory responses present in many chronic metabolic and age-related diseases. We will examine the molecular mechanisms of the antagonistic signaling between NF-κB and SIRT1 and describe how this crosstalk controls inflammatory process and energy metabolism. In addition, we will discuss how disturbances in this signaling crosstalk induce the appearance of chronic inflammation in metabolic diseases. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Negative control of p53 by Sir2alpha promotes cell survival under stress.

            The NAD-dependent histone deacetylation of Sir2 connects cellular metabolism with gene silencing as well as aging in yeast. Here, we show that mammalian Sir2alpha physically interacts with p53 and attenuates p53-mediated functions. Nicotinamide (Vitamin B3) inhibits an NAD-dependent p53 deacetylation induced by Sir2alpha, and also enhances the p53 acetylation levels in vivo. Furthermore, Sir2alpha represses p53-dependent apoptosis in response to DNA damage and oxidative stress, whereas expression of a Sir2alpha point mutant increases the sensitivity of cells in the stress response. Thus, our findings implicate a p53 regulatory pathway mediated by mammalian Sir2alpha. These results have significant implications regarding an important role for Sir2alpha in modulating the sensitivity of cells in p53-dependent apoptotic response and the possible effect in cancer therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Sir2 family of protein deacetylases.

              The yeast SIR protein complex has been implicated in transcription silencing and suppression of recombination. The Sir complex represses transcription at telomeres, mating-type loci, and ribosomal DNA. Unlike SIR3 and SIR4, the SIR2 gene is highly conserved in organisms ranging from archaea to humans. Interestingly, Sir2 is active as an NAD+-dependent deacetylase, which is broadly conserved from bacteria to higher eukaryotes. In this review, we discuss the role of NAD+, the unusual products of the deacetylation reaction, the Sir2 structure, and the Sir2 chemical inhibitors and activators that were recently identified. We summarize the current knowledge of the Sir2 homologs from different organisms, and finally we discuss the role of Sir2 in caloric restriction and aging.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                30 March 2019
                April 2019
                : 20
                : 7
                : 1601
                Affiliations
                Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; gongping1125@ 123456126.com (P.G.); 13940326908@ 123456163.com (Y.W.)
                Author notes
                [* ]Correspondence: jingyk@ 123456syphu.edu.cn ; Tel.: +86-24-2398-6975
                Author information
                https://orcid.org/0000-0002-7861-9132
                Article
                ijms-20-01601
                10.3390/ijms20071601
                6480544
                30935057
                b5817bf5-8470-4928-9087-dbd1ee3d26db
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 January 2019
                : 18 March 2019
                Categories
                Review

                Molecular biology
                hdac inhibitors,ku70,apoptosis,bax,c-flip,cancer
                Molecular biology
                hdac inhibitors, ku70, apoptosis, bax, c-flip, cancer

                Comments

                Comment on this article