14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Soil solarization with biodegradable materials and its impact on soil microbial communities

      , , , , ,
      Soil Biology and Biochemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Pathogen population genetics, evolutionary potential, and durable resistance.

          We hypothesize that the evolutionary potential of a pathogen population is reflected in its population genetic structure. Pathogen populations with a high evolutionary potential are more likely to overcome genetic resistance than pathogen populations with a low evolutionary potential. We propose a flexible framework to predict the evolutionary potential of pathogen populations based on analysis of their genetic structure. According to this framework, pathogens that pose the greatest risk of breaking down resistance genes have a mixed reproduction system, a high potential for genotype flow, large effective population sizes, and high mutation rates. The lowest risk pathogens are those with strict asexual reproduction, low potential for gene flow, small effective population sizes, and low mutation rates. We present examples of high-risk and low-risk pathogens. We propose general guidelines for a rational approach to breed durable resistance according to the evolutionary potential of the pathogen.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mycorrhiza helper bacteria revisited.

            In natural conditions, mycorrhizal fungi are surrounded by complex microbial communities, which modulate the mycorrhizal symbiosis. Here, the focus is on the so-called mycorrhiza helper bacteria (MHB). This concept is revisited, and the distinction is made between the helper bacteria, which assist mycorrhiza formation, and those that interact positively with the functioning of the symbiosis. After considering some examples of MHB from the literature, the ecological and evolutionary implications of the relationships of MHB with mycorrhizal fungi are discussed. The question of the specificity of the MHB effect is addressed, and an assessment is made of progress in understanding the mechanisms of the MHB effect, which has been made possible through the development of genomics. Finally, clear evidence is presented suggesting that some MHB promote the functioning of the mycorrhizal symbiosis. This is illustrated for three critical functions of practical significance: nutrient mobilization from soil minerals, fixation of atmospheric nitrogen, and protection of plants against root pathogens. The review concludes with discussion of future research priorities regarding the potentially very fruitful concept of MHB.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular determinants of rhizosphere colonization by Pseudomonas.

              Rhizosphere colonization is one of the first steps in the pathogenesis of soilborne microorganisms. It can also be crucial for the action of microbial inoculants used as biofertilizers, biopesticides, phytostimulators, and bioremediators. Pseudomonas, one of the best root colonizers, is therefore used as a model root colonizer. This review focuses on (a) the temporal-spatial description of root-colonizing bacteria as visualized by confocal laser scanning microscopal analysis of autofluorescent microorganisms, and (b) bacterial genes and traits involved in root colonization. The results show a strong parallel between traits used for the colonization of roots and of animal tissues, indicating the general importance of such a study. Finally, we identify several noteworthy areas for future research.
                Bookmark

                Author and article information

                Journal
                Soil Biology and Biochemistry
                Soil Biology and Biochemistry
                Elsevier BV
                00380717
                August 2008
                August 2008
                : 40
                : 8
                : 1989-1998
                Article
                10.1016/j.soilbio.2008.02.009
                b57656e9-ab96-438b-b157-1a5938de59bb
                © 2008

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article