1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional hyperconnectivity related to brain disease: maladaptive process or element of resilience?

      other
      , MD, *
      Neural Regeneration Research
      Wolters Kluwer - Medknow

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Injured Brains and Adaptive Networks: The Benefits and Costs of Hyperconnectivity.

          A common finding in human functional brain-imaging studies is that damage to neural systems paradoxically results in enhanced functional connectivity between network regions, a phenomenon commonly referred to as 'hyperconnectivity'. Here, we describe the various ways that hyperconnectivity operates to benefit a neural network following injury while simultaneously negotiating the trade-off between metabolic cost and communication efficiency. Hyperconnectivity may be optimally expressed by increasing connections through the most central and metabolically efficient regions (i.e., hubs). While adaptive in the short term, we propose that chronic hyperconnectivity may leave network hubs vulnerable to secondary pathological processes over the life span due to chronically elevated metabolic stress. We conclude by offering novel, testable hypotheses for advancing our understanding of the role of hyperconnectivity in systems-level brain plasticity in neurological disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extent of bilateral neuronal network reorganization and functional recovery in relation to stroke severity.

            Remodeling of neuronal structures and networks is believed to significantly contribute to (partial) restoration of functions after stroke. However, it has been unclear to what extent the brain reorganizes and how this correlates with functional recovery in relation to stroke severity. We applied serial resting-state functional MRI and diffusion tensor imaging together with behavioral testing to relate longitudinal modifications in functional and structural connectivity of the sensorimotor neuronal network to changes in sensorimotor function after unilateral stroke in rats. We found that gradual improvement of functions is associated with wide-ranging changes in functional and structural connectivity within bilateral neuronal networks, particularly after large stroke. Both after medium and large stroke, brain reorganization eventually leads to (partial) normalization of neuronal signal synchronization within the affected sensorimotor cortical network (intraregional signal coherence), as well as between the affected and unaffected sensorimotor cortices (interhemispheric functional connectivity). Furthermore, the bilateral network configuration shifts from subacutely increased "small-worldness," possibly reflective of initial excessive neuronal clustering and wiring, toward a baseline small-world topology, optimal for global information transfer and local processing, at chronic stages. Cortical network remodeling was accompanied by recovery of initially disrupted structural integrity in corticospinal tract regions, which correlated positively with retrieval of sensorimotor functions. Our study demonstrates that the degree of functional recovery after stroke is associated with the extent of preservation or restoration of ipsilesional corticospinal tracts in combination with reinstatement of interhemispheric neuronal signal synchronization and normalization of small-world cortical network organization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Low-Frequency Oscillations Are a Biomarker of Injury and Recovery After Stroke

              Low-frequency oscillations reflect brain injury but also contribute to normal behaviors. We examined hypotheses relating electroencephalography measures, including low-frequency oscillations, to injury and motor recovery poststroke. Patients with stroke completed structural neuroimaging, a resting-state electroencephalography recording and clinical testing. A subset admitted to an inpatient rehabilitation facility also underwent serial electroencephalography recordings. The relationship that electroencephalography measures (power and coherence with leads overlying ipsilesional primary motor cortex [iM1]) had with injury and motor status was assessed, focusing on delta (1–3 Hz) and high-beta (20–30 Hz) bands. Across all patients (n=62), larger infarct volume was related to higher delta band power in bilateral hemispheres and to higher delta band coherence between iM1 and bilateral regions. In chronic stroke, higher delta power bilaterally correlated with better motor status. In subacute stroke, higher delta coherence between iM1 and bilateral areas correlated with poorer motor status. These coherence findings were confirmed in serial recordings from 18 patients in an inpatient rehabilitation facility. Here, interhemispheric coherence between leads overlying iM1 and contralesional M1 was elevated at inpatient rehabilitation facility admission compared with healthy controls (n=22), declining to control levels over time. Decreases in interhemispheric coherence between iM1 and contralesional M1 correlated with better motor recovery. Delta band coherence with iM1 related to greater injury and poorer motor status subacutely, while delta band power related to greater injury and better motor status chronically. Low-frequency oscillations reflect both injury and recovery after stroke and may be useful biomarkers in stroke recovery and rehabilitation.
                Bookmark

                Author and article information

                Journal
                Neural Regen Res
                Neural Regen Res
                NRR
                Neural Regen Res
                Neural Regeneration Research
                Wolters Kluwer - Medknow (India )
                1673-5374
                1876-7958
                July 2023
                25 November 2022
                : 18
                : 7
                : 1489-1490
                Affiliations
                [1]Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
                [2]Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
                Author notes
                [* ] Correspondence to: Mathias Hoehn, m.hoehn@ 123456fz-juelich.de .
                Author information
                https://orcid.org/0000-0003-1423-0934
                https://orcid.org/0000-0001-5996-7572
                Article
                NRR-18-1489
                10.4103/1673-5374.361541
                10075104
                36571347
                b562400a-89b7-4848-9467-a642aff6eca7
                Copyright: © Neural Regeneration Research

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 12 August 2022
                : 27 October 2022
                : 03 November 2022
                Categories
                Perspective

                Comments

                Comment on this article