Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ecology, Not Host Phylogeny, Shapes the Oral Microbiome in Closely Related Species

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Host-associated microbiomes are essential for a multitude of biological processes. Placed at the contact zone between external and internal environments, the little-studied oral microbiome has important roles in host physiology and health. Here, we investigate the roles of host evolutionary relationships and ecology in shaping the oral microbiome in three closely related gorilla subspecies (mountain, Grauer's, and western lowland gorillas) using shotgun metagenomics of 46 museum-preserved dental calculus samples. We find that the oral microbiomes of mountain gorillas are functionally and taxonomically distinct from the other two subspecies, despite close evolutionary relationships and geographic proximity with Grauer's gorillas. Grauer's gorillas show intermediate bacterial taxonomic and functional, and dietary profiles. Altitudinal differences in gorilla subspecies ranges appear to explain these patterns, suggesting a close connection between dental calculus microbiomes and the environment, likely mediated through diet. This is further supported by the presence of gorilla subspecies-specific phyllosphere/rhizosphere taxa in the oral microbiome. Mountain gorillas show a high abundance of nitrate-reducing oral taxa, which may promote adaptation to a high-altitude lifestyle by modulating blood pressure. Our results suggest that ecology, rather than evolutionary relationships and geographic distribution, shape the oral microbiome in these closely related species.

          Related collections

          Most cited references163

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Fast and accurate short read alignment with Burrows–Wheeler transform

            Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ∼10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: rd@sanger.ac.uk
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              BEDTools: a flexible suite of utilities for comparing genomic features

              Motivation: Testing for correlations between different sets of genomic features is a fundamental task in genomics research. However, searching for overlaps between features with existing web-based methods is complicated by the massive datasets that are routinely produced with current sequencing technologies. Fast and flexible tools are therefore required to ask complex questions of these data in an efficient manner. Results: This article introduces a new software suite for the comparison, manipulation and annotation of genomic features in Browser Extensible Data (BED) and General Feature Format (GFF) format. BEDTools also supports the comparison of sequence alignments in BAM format to both BED and GFF features. The tools are extremely efficient and allow the user to compare large datasets (e.g. next-generation sequencing data) with both public and custom genome annotation tracks. BEDTools can be combined with one another as well as with standard UNIX commands, thus facilitating routine genomics tasks as well as pipelines that can quickly answer intricate questions of large genomic datasets. Availability and implementation: BEDTools was written in C++. Source code and a comprehensive user manual are freely available at http://code.google.com/p/bedtools Contact: aaronquinlan@gmail.com; imh4y@virginia.edu Supplementary information: Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Contributors
                Role: Associate Editor
                Journal
                Mol Biol Evol
                Mol Biol Evol
                molbev
                Molecular Biology and Evolution
                Oxford University Press (US )
                0737-4038
                1537-1719
                December 2022
                06 December 2022
                06 December 2022
                : 39
                : 12
                : msac263
                Affiliations
                Animal Ecology, Department of Ecology and Genetics, Uppsala University , 75236 Uppsala, Sweden
                Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh , Edinburgh EH9 3FL, United Kingdom
                Animal Ecology, Department of Ecology and Genetics, Uppsala University , 75236 Uppsala, Sweden
                Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology , 04103 Leipzig, Germany
                Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute , 07745 Jena, Germany
                Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology , 7491 Trondheim, Norway
                Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology , 04103 Leipzig, Germany
                Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute , 07745 Jena, Germany
                Faculty of Biological Sciences, Friedrich Schiller University , 07743 Jena, Germany
                Department of Anthropology, Harvard University , Cambridge, MA 02138, USA
                Animal Ecology, Department of Ecology and Genetics, Uppsala University , 75236 Uppsala, Sweden
                Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh , Edinburgh EH9 3FL, United Kingdom
                Science for Life Laboratory , 75237 Uppsala, Sweden
                Author notes

                Markella Moraitou and Adrian Forsythe contributed equally.

                Article
                msac263
                10.1093/molbev/msac263
                9778846
                36472532
                b5122eb2-87a0-430f-8f27-d7b2a1c6459c
                © The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 20
                Categories
                Discoveries
                AcademicSubjects/SCI01130
                AcademicSubjects/SCI01180

                Molecular biology
                ancient dna,dental calculus,museum specimens,gorilla,metagenome-assembled genomes,shotgun metagenomics

                Comments

                Comment on this article