8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Photons to food: genetic improvement of cereal crop photosynthesis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Photosynthesis has become a major trait of interest for cereal yield improvement as breeders appear to have reached the theoretical genetic limit for harvest index, the mass of grain as a proportion of crop biomass. Yield improvements afforded by the adoption of green revolution dwarfing genes to wheat and rice are becoming exhausted, and improvements in biomass and radiation use efficiency are now sought in these crops. Exploring genetic diversity in photosynthesis is now possible using high-throughput techniques, and low-cost genotyping facilitates discovery of the genetic architecture underlying this variation. Photosynthetic traits have been shown to be highly heritable, and significant variation is present for these traits in available germplasm. This offers hope that breeding for improved photosynthesis and radiation use efficiency in cereal crops is tractable and a useful shorter term adjunct to genetic and genome engineering to boost yield potential.

          Abstract

          Photosynthetic performance is a key target for yield improvement in cereal crops. Evidence for genetic variation in photosynthesis is reviewed along with new approaches to measure these traits.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species.

          Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves. These aspects include the kinetic properties of ribulose bisphosphate carboxylase-oxygenase; the requirements of the photosynthetic carbon reduction and photorespiratory carbon oxidation cycles for reduced pyridine nucleotides; the dependence of electron transport on photon flux and the presence of a temperature dependent upper limit to electron transport. The measurements of gas exchange with which the model outputs may be compared include those of the temperature and partial pressure of CO2(p(CO2)) dependencies of quantum yield, the variation of compensation point with temperature and partial pressure of O2(p(O2)), the dependence of net CO2 assimilation rate on p(CO2) and irradiance, and the influence of p(CO2) and irradiance on the temperature dependence of assimilation rate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Photosynthesis and nitrogen relationships in leaves of C3 plants

            The photosynthetic capacity of leaves is related to the nitrogen content primarily bacause the proteins of the Calvin cycle and thylakoids represent the majority of leaf nitrogen. To a first approximation, thylakoid nitrogen is proportional to the chlorophyll content (50 mol thylakoid N mol-1 Chl). Within species there are strong linear relationships between nitrogen and both RuBP carboxylase and chlorophyll. With increasing nitrogen per unit leaf area, the proportion of total leaf nitrogen in the thylakoids remains the same while the proportion in soluble protein increases. In many species, growth under lower irradiance greatly increases the partitioning of nitrogen into chlorophyll and the thylakoids, while the electron transport capacity per unit of chlorophyll declines. If growth irradiance influences the relationship between photosynthetic capacity and nitrogen content, predicting nitrogen distribution between leaves in a canopy becomes more complicated. When both photosynthetic capacity and leaf nitrogen content are expressed on the basis of leaf area, considerable variation in the photosynthetic capacity for a given leaf nitrogen content is found between species. The variation reflects different strategies of nitrogen partitioning, the electron transport capacity per unit of chlorophyll and the specific activity of RuBP carboxylase. Survival in certain environments clearly does not require maximising photosynthetic capacity for a given leaf nitrogen content. Species that flourish in the shade partition relatively more nitrogen into the thylakoids, although this is associated with lower photosynthetic capacity per unit of nitrogen.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications.

              Chlorophyll fluorescence is a non-invasive measurement of photosystem II (PSII) activity and is a commonly used technique in plant physiology. The sensitivity of PSII activity to abiotic and biotic factors has made this a key technique not only for understanding the photosynthetic mechanisms but also as a broader indicator of how plants respond to environmental change. This, along with low cost and ease of collecting data, has resulted in the appearance of a large array of instrument types for measurement and calculated parameters which can be bewildering for the new user. Moreover, its accessibility can lead to misuse and misinterpretation when the underlying photosynthetic processes are not fully appreciated. This review is timely because it sits at a point of renewed interest in chlorophyll fluorescence where fast measurements of photosynthetic performance are now required for crop improvement purposes. Here we help the researcher make choices in terms of protocols using the equipment and expertise available, especially for field measurements. We start with a basic overview of the principles of fluorescence analysis and provide advice on best practice for taking pulse amplitude-modulated measurements. We also discuss a number of emerging techniques for contemporary crop and ecology research, where we see continual development and application of analytical techniques to meet the new challenges that have arisen in recent years. We end the review by briefly discussing the emerging area of monitoring fluorescence, chlorophyll fluorescence imaging, field phenotyping, and remote sensing of crops for yield and biomass enhancement.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                J Exp Bot
                J. Exp. Bot
                exbotj
                Journal of Experimental Botany
                Oxford University Press (UK )
                0022-0957
                1460-2431
                06 April 2020
                18 February 2020
                18 February 2020
                : 71
                : 7 , Special Issue: Innovations in Agriculture for Food Security
                : 2226-2238
                Affiliations
                [1 ] ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University , Canberra, ACT, Australia
                [2 ] CSIRO Agriculture and Food , Canberra, ACT, Australia
                [3 ] University of Essex , UK
                Author notes
                Present address: Agriculture Victoria, 110 Natimuk Road, Horsham, Vic 3400, Australia.
                Author information
                http://orcid.org/0000-0001-8700-6613
                http://orcid.org/0000-0003-4993-3816
                http://orcid.org/0000-0003-4634-5103
                http://orcid.org/0000-0001-5653-1802
                http://orcid.org/0000-0001-9364-3109
                Article
                eraa077
                10.1093/jxb/eraa077
                7135014
                32083680
                b4f71c12-ae4d-450e-8953-6b0d349d5d33
                © The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 October 2019
                : 23 January 2020
                : 17 February 2020
                : 17 March 2020
                Page count
                Pages: 13
                Funding
                Funded by: ARC Centre of Excellence for Translational Photosynthesis;
                Award ID: CE140100015
                Funded by: NSW Environmental Trust, DOI 10.13039/501100001195;
                Award ID: 2016/RD/0006
                Categories
                Review Papers
                AcademicSubjects/SCI01210

                Plant science & Botany
                co2 assimilation,electron transport,grain yield,radiation use efficiency,rubisco

                Comments

                Comment on this article