68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Intensive Blood Pressure Lowering on Cardiovascular and Renal Outcomes: A Systematic Review and Meta-Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In a systematic review and meta-analysis Vlado Perkovic and colleagues investigate whether more intensive blood pressure lowering regimens are associated with greater reductions in the risk of major cardiovascular events and end stage kidney disease.

          Abstract

          Background

          Guidelines recommend intensive blood pressure (BP) lowering in patients at high risk. While placebo-controlled trials have demonstrated 22% reductions in coronary heart disease (CHD) and stroke associated with a 10-mmHg difference in systolic BP, it is unclear if more intensive BP lowering strategies are associated with greater reductions in risk of CHD and stroke. We did a systematic review to assess the effects of intensive BP lowering on vascular, eye, and renal outcomes.

          Methods and Findings

          We systematically searched Medline, Embase, and the Cochrane Library for trials published between 1950 and July 2011. We included trials that randomly assigned individuals to different target BP levels.

          We identified 15 trials including a total of 37,348 participants. On average there was a 7.5/4.5-mmHg BP difference. Intensive BP lowering achieved relative risk (RR) reductions of 11% for major cardiovascular events (95% CI 1%–21%), 13% for myocardial infarction (0%–25%), 24% for stroke (8%–37%), and 11% for end stage kidney disease (3%–18%). Intensive BP lowering regimens also produced a 10% reduction in the risk of albuminuria (4%–16%), and a trend towards benefit for retinopathy (19%, 0%–34%, p = 0.051) in patients with diabetes. There was no clear effect on cardiovascular or noncardiovascular death. Intensive BP lowering was well tolerated; with serious adverse events uncommon and not significantly increased, except for hypotension (RR 4.16, 95% CI 2.25 to 7.70), which occurred infrequently (0.4% per 100 person-years).

          Conclusions

          Intensive BP lowering regimens provided greater vascular protection than standard regimens that was proportional to the achieved difference in systolic BP, but did not have any clear impact on the risk of death or serious adverse events. Further trials are required to more clearly define the risks and benefits of BP targets below those currently recommended, given the benefits suggested by the currently available data.

          Please see later in the article for the Editors' Summary.

          Editors' Summary

          Background

          About a third of US and UK adults have high blood pressure (hypertension). Although hypertension has no obvious symptoms, it can lead to heart attacks, stroke, and other forms of cardiovascular disease, to kidney failure, and to retinopathy (blindness caused by damage to the blood vessels in the back of the eye). Hypertension is diagnosed by measuring blood pressure (BP)—the force that blood moving around the body exerts on the inside of large blood vessels. BP is highest when the heart is pumping out blood (systolic BP) and lowest when it is refilling with blood (diastolic BP). A normal adult BP is defined as a systolic BP of less than 130 millimeters of mercury (mmHg) and a diastolic BP of less than 85 mmHg (a BP of 130/85). A reading of more than 140/90 indicates hypertension. Many factors affect BP, but overweight people and individuals who eat fatty or salty food are at high risk of developing hypertension. Mild hypertension can be corrected by making lifestyle changes, but people often take antihypertensive drugs to reduce their BP.

          Why Was This Study Done?

          Doctors usually try to reduce the BP of their hypertensive patients to 140/90 mmHg. However, some treatment guidelines now advocate a target BP of 130/80 mmHg for individuals at high risk of life-threatening cardiovascular events, such as people with diabetes or kidney impairment. But does more intensive BP lowering actually reduce the risk of heart attacks and stroke? Although placebo-controlled randomized trials of BP lowering have suggested that a 10 mmHg fall in systolic BP is associated with a 22% reduction in the risk in coronary heart disease and a 41% reduction in the risk of stroke, it is unclear whether intensive BP lowering strategies are associated with greater reductions in the risk of cardiovascular disease than standard strategies. In this systematic review (a search that uses predefined criteria to identify all the research on a given topic) and meta-analysis (a statistical method for combining the results of studies), the researchers investigate the effects of intensive BP lowering on cardiovascular, eye, and renal outcomes.

          What Did the Researchers Do and Find?

          The researchers identified 15 randomized controlled trials in which more than 37,000 participants were randomly assigned to antihypertensive drug-based strategies designed to achieve different target BPs. On average, the more intensive strategies reduced the BP of participants by 7.5/4.5 mmHg more than the less intensive strategies. Compared to standard BP lowering strategies, more intensive BP lowering strategies reduced the risk of major cardiovascular events (a composite endpoint comprising heart attack, stroke, heart failure, and cardiovascular death) by 11%, the risk of heart attack by 13%, the risk of stroke by 24%, the risk of end-stage kidney disease by 11%, and the risk of albuminuria (protein in the urine, a sign of kidney damage) by 10%. There was also a trend towards a reduced risk for retinopathy with more intensive BP lowering but no clear reduction in cardiovascular or noncardiovascular deaths. Finally, aiming for a lower BP target did not increase the rate of drug discontinuation or the risk of serious adverse events apart from hypotension (very low BP).

          What Do These Findings Mean?

          These findings suggest that, although intensive BP lowering regimens have no clear effect on the risk of death, they may provide greater protection against cardiovascular events than standard BP lowering regimens. Indeed, the researchers calculate that among every thousand hypertensive patients with a high cardiovascular risk, more intensive BP lowering could prevent two of the 20 cardiovascular events expected to happen every year. Although intensive BP lowering did not seem to increase the risk of severe adverse effects, the accuracy of this finding is limited by inconsistent reporting of adverse events in the trials included in this study. Moreover, because most of the trial participants had additional risk factors for cardiovascular events such as diabetes and chronic kidney disease, these findings may not be generalizable to people with hypertension alone. Thus, although this study suggests that a target BP of 130/80 is likely to produce an additional overall benefit compared to a target of 140/90, more trials are needed to confirm this conclusion and to determine the best way to reach the lower target.

          Additional Information

          Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001293.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension.

          Hypertension is estimated to cause 4.5% of current global disease burden and is as prevalent in many developing countries, as in the developed world. Blood pressure-induced cardiovascular risk rises continuously across the whole blood pressure range. Countries vary widely in capacity for management of hypertension, but worldwide the majority of diagnosed hypertensives are inadequately controlled. This statement addresses the ascertainment of overall cardiovascular risk to establish thresholds for initiation and goals of treatment, appropriate treatment strategies for non-drug and drug therapies, and cost-effectiveness of treatment. Since publication of the WHO/ISH Guidelines for the Management of Hypertension in 1999, more evidence has become available to support a systolic blood pressure threshold of 140 mmHg for even 'low-risk' patients. In high-risk patients there is evidence for lower thresholds. Lifestyle modification is recommended for all individuals. There is evidence that specific agents have benefits for patients with particular compelling indications, and that monotherapy is inadequate for the majority of patients. For patients without a compelling indication for a particular drug class, on the basis of comparative trial data, availability, and cost, a low dose of diuretic should be considered for initiation of therapy. In most places a thiazide diuretic is the cheapest option and thus most cost effective, but for compelling indications where other classes provide additional benefits, even if more expensive, they may be more cost effective. In high-risk patients who attain large benefits from treatment, expensive drugs may be cost effective, but in low-risk patients treatment may not be cost-effective unless the drugs are cheap.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial.

            Hypertension is a leading cause of end-stage renal disease (ESRD) in the United States, with no known treatment to prevent progressive declines leading to ESRD. To compare the effects of 2 levels of blood pressure (BP) control and 3 antihypertensive drug classes on glomerular filtration rate (GFR) decline in hypertension. Randomized 3 x 2 factorial trial with enrollment from February 1995 to September 1998. A total of 1094 African Americans aged 18 to 70 years with hypertensive renal disease (GFR, 20-65 mL/min per 1.73 m(2)) were recruited from 21 clinical centers throughout the United States and followed up for 3 to 6.4 years. Participants were randomly assigned to 1 of 2 mean arterial pressure goals, 102 to 107 mm Hg (usual; n = 554) or 92 mm Hg or less (lower; n = 540), and to initial treatment with either a beta-blocker (metoprolol 50-200 mg/d; n = 441), an angiotensin-converting enzyme inhibitor (ramipril 2.5-10 mg/d; n = 436) or a dihydropyridine calcium channel blocker, (amlodipine 5-10 mg/d; n = 217). Open-label agents were added to achieve the assigned BP goals. Rate of change in GFR (GFR slope); clinical composite outcome of reduction in GFR by 50% or more (or > or =25 mL/min per 1.73 m2) from baseline, ESRD, or death. Three primary treatment comparisons were specified: lower vs usual BP goal; ramipril vs metoprolol; and amlodipine vs metoprolol. Achieved BP averaged (SD) 128/78 (12/8) mm Hg in the lower BP group and 141/85 (12/7) mm Hg in the usual BP group. The mean (SE) GFR slope from baseline through 4 years did not differ significantly between the lower BP group (-2.21 [0.17] mL/min per 1.73 m2 per year) and the usual BP group (-1.95 [0.17] mL/min per 1.73 m2 per year; P =.24), and the lower BP goal did not significantly reduce the rate of the clinical composite outcome (risk reduction for lower BP group = 2%; 95% confidence interval [CI], -22% to 21%; P =.85). None of the drug group comparisons showed consistent significant differences in the GFR slope. However, compared with the metoprolol and amlodipine groups, the ramipril group manifested risk reductions in the clinical composite outcome of 22% (95% CI, 1%-38%; P =.04) and 38% (95% CI, 14%-56%; P =.004), respectively. There was no significant difference in the clinical composite outcome between the amlodipine and metoprolol groups. No additional benefit of slowing progression of hypertensive nephrosclerosis was observed with the lower BP goal. Angiotensin-converting enzyme inhibitors appear to be more effective than beta-blockers or dihydropyridine calcium channel blockers in slowing GFR decline.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              K/DOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease.

              (2004)
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                PLoS Med
                PLoS
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                August 2012
                August 2012
                21 August 2012
                : 9
                : 8
                : e1001293
                Affiliations
                [1 ]The George Institute for Global Health, The University of Sydney, Sydney, Australia
                [2 ]Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
                [3 ]Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, United States of America
                [4 ]Department of Medicine and Clinical Science Graduate School of Medical Sciences, Kyushu University, Japan
                Barts and The London School of Medicine and Dentistry, United Kingdom
                Author notes

                JL has received grant support from Pfizer for hypertension research. VP, MW, SM, and JC have received honoraria from Servier for scientific presentations relating to blood pressure. SM and JC were principal investigators on ADVANCE, a blood pressure lowering trial funded by Servier and the Australian National Health and Medical Research Council. BN has received BP-related research support from Servier, and honoraria for scientific presentations related to blood pressure from Novartis, Tanabe, and Servier. AR has received an unrestricted grant from Dr Reddy’s Laboratories for a trial that includes blood pressure-lowering agents. PE, FT, TN, HW, and GH declare they have no competing interests.

                Conceived and designed the experiments: JL VP. Performed the experiments: JL PE. Analyzed the data: JL BN PE VP. Wrote the first draft of the manuscript: JL. Contributed to the writing of the manuscript: JL BN PE VP. ICMJE criteria for authorship read and met: JL BN PE TN MW AR HW SM FT GH JC VP. Agree with manuscript results and conclusions: JL BN PE TN MW AR HW SM FT GH JC VP. Contributed to data interpretation and critical revision of the report: TN MW AR HW SM FT GH JC.

                Article
                PMEDICINE-D-11-02459
                10.1371/journal.pmed.1001293
                3424246
                22927798
                b4f6642d-bfe0-4c3c-b172-42b7c4486988
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 7 October 2011
                : 6 July 2012
                Page count
                Pages: 14
                Funding
                JL was supported by an Amgen Renal Research Fellowship. VP was supported by an Australian Heart Foundation Career Development Award. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine
                Cardiovascular
                Hypertension

                Medicine
                Medicine

                Comments

                Comment on this article