3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Machine Learning and IoT Applied to Cardiovascular Diseases Identification through Heart Sounds: A Literature Review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This article presents a systematic mapping study dedicated to conduct a literature review on machine learning and IoT applied in the identification of diseases through heart sounds. This research was conducted between January 2010 and July 2021, considering IEEE Xplore, PubMed Central, ACM Digital Library, JMIR—Journal of Medical Internet Research, Springer Library, and Science Direct. The initial search resulted in 4372 papers, and after applying the inclusion and exclusion criteria, 58 papers were selected for full reading to answer the research questions. The main results are: of the 58 articles selected, 46 (79.31%) mention heart rate observation methods with wearable sensors and digital stethoscopes, and 34 (58.62%) mention care with machine learning algorithms. The analysis of the studies based on the bibliometric network generated by the VOSviewer showed in 13 studies (22.41%) a trend related to the use of intelligent services in the prediction of diagnoses related to cardiovascular disorders.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: not found
          • Article: not found

          Guidelines for conducting systematic mapping studies in software engineering: An update

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The use of photoplethysmography for assessing hypertension

            The measurement of blood pressure (BP) is critical to the treatment and management of many medical conditions. High blood pressure is associated with many chronic disease conditions, and is a major source of mortality and morbidity around the world. For outpatient care as well as general health monitoring, there is great interest in being able to accurately and frequently measure BP outside of a clinical setting, using mobile or wearable devices. One possible solution is photoplethysmography (PPG), which is most commonly used in pulse oximetry in clinical settings for measuring oxygen saturation. PPG technology is becoming more readily available, inexpensive, convenient, and easily integrated into portable devices. Recent advances include the development of smartphones and wearable devices that collect pulse oximeter signals. In this article, we review (i) the state-of-the-art and the literature related to PPG signals collected by pulse oximeters, (ii) various theoretical approaches that have been adopted in PPG BP measurement studies, and (iii) the potential of PPG measurement devices as a wearable application. Past studies on changes in PPG signals and BP are highlighted, and the correlation between PPG signals and BP are discussed. We also review the combined use of features extracted from PPG and other physiological signals in estimating BP. Although the technology is not yet mature, it is anticipated that in the near future, accurate, continuous BP measurements may be available from mobile and wearable devices given their vast potential.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An open access database for the evaluation of heart sound algorithms

              In the past few decades, analysis of heart sound signals (i.e., the phonocardiogram or PCG), especially for automated heart sound segmentation and classification, has been widely studied and has been reported to have the potential value to detect pathology accurately in clinical applications. However, comparative analyses of algorithms in the literature have been hindered by the lack of high-quality, rigorously validated, and standardized open databases of heart sound recordings. This paper describes a public heart sound database, assembled for an international competition, the PhysioNet/Computing in Cardiology (CinC) Challenge 2016. The archive comprises nine different heart sound databases sourced from multiple research groups around the world. It includes 2,435 heart sound recordings in total collected from 1,297 healthy subjects and patients with a variety of conditions, including heart valve disease and coronary artery disease. The recordings were collected from a variety of clinical or nonclinical (such as in-home visits) environments and equipment. The length of recording varied from several seconds to several minutes. This article reports detailed information about the subjects/patients including demographics (number, age, gender), recordings (number, location, state and time length), associated synchronously recorded signals, sampling frequency and sensor type used. We also provide a brief summary of the commonly used heart sound segmentation and classification methods, including open source code provided concurrently for the Challenge. A description of the PhysioNet/CinC Challenge 2016, including the main aims, the training and test sets, the hand corrected annotations for different heart sound states, the scoring mechanism, and associated open source code are provided. In addition, several potential benefits from the public heart sound database are discussed.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Informatics
                Informatics
                MDPI AG
                2227-9709
                December 2021
                October 30 2021
                : 8
                : 4
                : 73
                Article
                10.3390/informatics8040073
                b4f5d50a-62b6-4698-83f0-e589a8821957
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article