33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stimuli sensitive hydrogels for ophthalmic drug delivery: A review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Amongst the various routes of drug delivery, the field of ocular drug delivery is one of the most interesting and challenging endeavors facing the pharmaceutical scientist for past 10-20 years. As an isolated organ, eye is very difficult to study from a drug delivery point of view. Despite this limitation, improvements have been made with the objective of maintaining the drug in the biophase for an extended period. A major problem in ocular therapeutics is the attainment of an optimal drug concentration at the site of action. To achieve effective ophthalmic therapy, an adequate amount of active ingredient must be delivered and maintained within the eye. The most frequently used dosage forms, i.e., eye solution, eye ointments, eye gels, and eye suspensions are compromised in their effectiveness by several limitations leading to poor ocular bioavailability. Ophthalmic use of viscosity-enhancing agents, penetration enhancers, cyclodextrins, prodrug approaches, and ocular inserts, and the ready existing drug carrier systems along with their application to ophthalmic drug delivery are common to improve ocular bioavailability. Amongst these hydrogel (stimuli sensitive) systems are important, which undergo reversible volume and/or sol-gel phase transitions in response to physiological (temperature, pH and present of ions in organism fluids, enzyme substrate) or other external (electric current, light) stimuli. They help to increase in precorneal residence time of drug to a sufficient extent that an ocularly delivered drug can exhibit its maximum biological action. The concept of this innovative ophthalmic delivery approach is to decrease the systemic side effects and to create a more pronounced effect with lower doses of the drug. The present article describes the advantages and use stimuli sensitive of hydrogel systems in ophthalmic drug delivery.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Hydrogels in pharmaceutical formulations.

          N. Peppas (2000)
          The availability of large molecular weight protein- and peptide-based drugs due to the recent advances in the field of molecular biology has given us new ways to treat a number of diseases. Synthetic hydrogels offer a possibly effective and convenient way to administer these compounds. Hydrogels are hydrophilic, three-dimensional networks, which are able to imbibe large amounts of water or biological fluids, and thus resemble, to a large extent, a biological tissue. They are insoluble due to the presence of chemical (tie-points, junctions) and/or physical crosslinks such as entanglements and crystallites. These materials can be synthesized to respond to a number of physiological stimuli present in the body, such as pH, ionic strength and temperature. The aim of this article is to present a concise review on the applications of hydrogels in the pharmaceutical field, hydrogel characterization and analysis of drug release from such devices.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Collapse of Gels and the Critical Endpoint

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics

                Bookmark

                Author and article information

                Journal
                Int J Pharm Investig
                Int J Pharm Investig
                IJPI
                International Journal of Pharmaceutical Investigation
                Medknow Publications & Media Pvt Ltd (India )
                2230-973X
                2230-9713
                Apr-Jun 2012
                : 2
                : 2
                : 54-60
                Affiliations
                [1] Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, India
                Author notes
                Address for correspondence: Assistant Prof. Swatantra KS Kushwaha, Department of Pharmaceutical Sciences, Pranveer Singh Institute of Technology, Kanpur - 208 020, India. E-mail: swatantrakushwaha@ 123456yahoo.co.in
                Article
                IJPI-2-54
                10.4103/2230-973X.100036
                3482766
                23119233
                b4ecfd4b-3d37-414d-93f9-c88ea8d52417
                Copyright: © International Journal of Pharmaceutical Investigation

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Review Article

                Pharmacology & Pharmaceutical medicine
                hydrogel,in situ gel,stimuli sensitive,ocular,instillation
                Pharmacology & Pharmaceutical medicine
                hydrogel, in situ gel, stimuli sensitive, ocular, instillation

                Comments

                Comment on this article