13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Personalizing exoskeleton assistance while walking in the real world

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Personalized exoskeleton assistance provides users with the largest improvements in walking speed 1 and energy economy 24 but requires lengthy tests under unnatural laboratory conditions. Here we show that exoskeleton optimization can be performed rapidly and under real-world conditions. We designed a portable ankle exoskeleton based on insights from tests with a versatile laboratory testbed. We developed a data-driven method for optimizing exoskeleton assistance outdoors using wearable sensors and found that it was equally effective as laboratory methods, but identified optimal parameters four times faster. We performed real-world optimization using data collected during many short bouts of walking at varying speeds. Assistance optimized during one hour of naturalistic walking in a public setting increased self-selected speed by 9 ± 4% and reduced the energy used to travel a given distance by 17 ± 5% compared with normal shoes. This assistance reduced metabolic energy consumption by 23 ± 8% when participants walked on a treadmill at a standard speed of 1.5 m s −1. Human movements encode information that can be used to personalize assistive devices and enhance performance.

          Abstract

          A portable ankle exoskeleton uses a data-driven method and wearable sensors to adapt to the user as they walk in a natural setting.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Gait speed and survival in older adults.

          Survival estimates help individualize goals of care for geriatric patients, but life tables fail to account for the great variability in survival. Physical performance measures, such as gait speed, might help account for variability, allowing clinicians to make more individualized estimates. To evaluate the relationship between gait speed and survival. Pooled analysis of 9 cohort studies (collected between 1986 and 2000), using individual data from 34,485 community-dwelling older adults aged 65 years or older with baseline gait speed data, followed up for 6 to 21 years. Participants were a mean (SD) age of 73.5 (5.9) years; 59.6%, women; and 79.8%, white; and had a mean (SD) gait speed of 0.92 (0.27) m/s. Survival rates and life expectancy. There were 17,528 deaths; the overall 5-year survival rate was 84.8% (confidence interval [CI], 79.6%-88.8%) and 10-year survival rate was 59.7% (95% CI, 46.5%-70.6%). Gait speed was associated with survival in all studies (pooled hazard ratio per 0.1 m/s, 0.88; 95% CI, 0.87-0.90; P < .001). Survival increased across the full range of gait speeds, with significant increments per 0.1 m/s. At age 75, predicted 10-year survival across the range of gait speeds ranged from 19% to 87% in men and from 35% to 91% in women. Predicted survival based on age, sex, and gait speed was as accurate as predicted based on age, sex, use of mobility aids, and self-reported function or as age, sex, chronic conditions, smoking history, blood pressure, body mass index, and hospitalization. In this pooled analysis of individual data from 9 selected cohorts, gait speed was associated with survival in older adults.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Meaningful change and responsiveness in common physical performance measures in older adults.

            To estimate the magnitude of small meaningful and substantial individual change in physical performance measures and evaluate their responsiveness. Secondary data analyses using distribution- and anchor-based methods to determine meaningful change. Secondary analysis of data from an observational study and clinical trials of community-dwelling older people and subacute stroke survivors. Older adults with mobility disabilities in a strength training trial (n=100), subacute stroke survivors in an intervention trial (n=100), and a prospective cohort of community-dwelling older people (n=492). Gait speed, Short Physical Performance Battery (SPPB), 6-minute-walk distance (6MWD), and self-reported mobility. Most small meaningful change estimates ranged from 0.04 to 0.06 m/s for gait speed, 0.27 to 0.55 points for SPPB, and 19 to 22 m for 6MWD. Most substantial change estimates ranged from 0.08 to 0.14 m/s for gait speed, 0.99 to 1.34 points for SPPB, and 47 to 49 m for 6MWD. Based on responsiveness indices, per-group sample sizes for clinical trials ranged from 13 to 42 for substantial change and 71 to 161 for small meaningful change. Best initial estimates of small meaningful change are near 0.05 m/s for gait speed, 0.5 points for SPPB, and 20 m for 6MWD and of substantial change are near 0.10 m/s for gait speed, 1.0 point for SPPB, and 50 m for 6MWD. For clinical use, substantial change in these measures and small change in gait speed and 6MWD, but not SPPB, are detectable. For research use, these measures yield feasible sample sizes for detecting meaningful change.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Translating Fatigue to Human Performance.

              Despite flourishing interest in the topic of fatigue-as indicated by the many presentations on fatigue at the 2015 annual meeting of the American College of Sports Medicine-surprisingly little is known about its impact on human performance. There are two main reasons for this dilemma: (1) the inability of current terminology to accommodate the scope of the conditions ascribed to fatigue, and (2) a paucity of validated experimental models. In contrast to current practice, a case is made for a unified definition of fatigue to facilitate its management in health and disease. Based on the classic two-domain concept of Mosso, fatigue is defined as a disabling symptom in which physical and cognitive function is limited by interactions between performance fatigability and perceived fatigability. As a symptom, fatigue can only be measured by self-report, quantified as either a trait characteristic or a state variable. One consequence of such a definition is that the word fatigue should not be preceded by an adjective (e.g., central, mental, muscle, peripheral, and supraspinal) to suggest the locus of the changes responsible for an observed level of fatigue. Rather, mechanistic studies should be performed with validated experimental models to identify the changes responsible for the reported fatigue. As indicated by three examples (walking endurance in old adults, time trials by endurance athletes, and fatigue in persons with multiple sclerosis) discussed in the review, however, it has proven challenging to develop valid experimental models of fatigue. The proposed framework provides a foundation to address the many gaps in knowledge of how laboratory measures of fatigue and fatigability impact real-world performance.
                Bookmark

                Author and article information

                Contributors
                stevecollins@stanford.edu
                Journal
                Nature
                Nature
                Nature
                Nature Publishing Group UK (London )
                0028-0836
                1476-4687
                12 October 2022
                12 October 2022
                2022
                : 610
                : 7931
                : 277-282
                Affiliations
                [1 ]GRID grid.168010.e, ISNI 0000000419368956, Department of Mechanical Engineering, , Stanford University, ; Stanford, CA USA
                [2 ]GRID grid.168010.e, ISNI 0000000419368956, Department of Bioengineering, , Stanford University, ; Stanford, CA USA
                [3 ]GRID grid.168010.e, ISNI 0000000419368956, Department of Aeronautics and Astronautics, , Stanford University, ; Stanford, CA USA
                Author information
                http://orcid.org/0000-0001-9302-3911
                http://orcid.org/0000-0002-7238-9663
                http://orcid.org/0000-0002-3997-3374
                Article
                5191
                10.1038/s41586-022-05191-1
                9556303
                36224415
                b4d1d3ce-c963-4c00-8b02-0ab5db17f086
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 23 February 2022
                : 4 August 2022
                Categories
                Article
                Custom metadata
                © The Author(s), under exclusive licence to Springer Nature Limited 2022

                Uncategorized
                biomedical engineering,translational research,mechanical engineering
                Uncategorized
                biomedical engineering, translational research, mechanical engineering

                Comments

                Comment on this article