10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SCOP/PHLPP1β mediates circadian regulation of long-term recognition memory

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Learning and memory depend on the time of day in various organisms, but it is not clear whether and how the circadian clock regulates memory performance. Here we show that consolidation of long-term recognition memory is a circadian-regulated process, which is blunted by disruption of the hippocampal clock. We focused on SCOP, a key molecule regulating hippocampus-dependent long-term memory for objects. The amounts of SCOP and its binding partner K-Ras in the hippocampal membrane rafts exhibit robust circadian changes, and SCOP knockdown in the hippocampal CA1 impairs long-term memory at night. Circadian changes in stimulus-dependent activation of ERK in the hippocampal neurons are dependent on the SCOP levels in the membrane rafts, while Scop knockout abrogates the activation rhythm. We conclude that long-term memory formation is regulated by the circadian clock through SCOP dynamics in the membrane rafts of the hippocampal CA1.

          Abstract

          Learning and memory are subject to circadian variation, though the molecular mechanisms behind this are unclear. Here, the authors show SCOP, a regulator of hippocampal memory, undergoes circadian changes in CA1 membrane raft dynamics and contributes to time-dependent changes in long-term memory.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          High-efficiency transformation of mammalian cells by plasmid DNA.

          We describe a simple calcium phosphate transfection protocol and neo marker vectors that achieve highly efficient transformation of mammalian cells. In this protocol, the calcium phosphate-DNA complex is formed gradually in the medium during incubation with cells and precipitates on the cells. The crucial factors for obtaining efficient transformation are the pH (6.95) of the buffer used for the calcium phosphate precipitation, the CO2 level (3%) during the incubation of the DNA with the cells, and the amount (20 to 30 micrograms) and the form (circular) of DNA. In sharp contrast to the results with circular DNA, linear DNA is almost inactive. Under these conditions, 50% of mouse L(A9) cells can be stably transformed with pcDneo, a simian virus 40-based neo (neomycin resistance) marker vector. The NIH3T3, C127, CV1, BHK, CHO, and HeLa cell lines were transformed at efficiencies of 10 to 50% with this vector and the neo marker-incorporated pcD vectors that were used for the construction and transduction of cDNA expression libraries as well as for the expression of cloned cDNA in mammalian cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spatial memory, recognition memory, and the hippocampus.

            There is wide agreement that spatial memory is dependent on the integrity of the hippocampus, but the importance of the hippocampus for nonspatial tasks, including tasks of object recognition memory is not as clear. We examined the relationship between hippocampal lesion size and both spatial memory and object recognition memory in rats. Spatial memory was impaired after bilateral dorsal hippocampal lesions that encompassed 30-50% total volume, and as lesion size increased from 50% to approximately 100% of total hippocampal volume, performance was similarly impaired. In contrast, object recognition was intact after dorsal hippocampal lesions that damaged 50-75% of total hippocampal volume and was impaired only after larger lesions that encompassed 75-100% of hippocampal volume. Last, ventral hippocampal lesions that encompassed approximately 50% of total hippocampal volume impaired spatial memory but did not affect object recognition memory. These findings show that the hippocampus is important for both spatial memory and recognition memory. However, spatial memory performance requires more hippocampal tissue than does recognition memory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recognition memory and the medial temporal lobe: a new perspective.

              Recognition memory is widely viewed as consisting of two components, recollection and familiarity, which have been proposed to be dependent on the hippocampus and the adjacent perirhinal cortex, respectively. Here, we propose an alternative perspective: we suggest that the methods traditionally used to separate recollection from familiarity instead separate strong memories from weak memories. A review of work with humans, monkeys and rodents finds evidence for familiarity signals (as well as recollection signals) in the hippocampus and recollection signals (as well as familiarity signals) in the perirhinal cortex. We also indicate ways in which the functions of the medial temporal lobe structures are different, and suggest that these structures work together in a cooperative and complementary way.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                30 September 2016
                2016
                : 7
                : 12926
                Affiliations
                [1 ]Department of Biological Sciences, Graduate School of Science, The University of Tokyo , Tokyo 113-0033, Japan
                [2 ]Department of Cellular Neurobiology, Brain Research Institute, Niigata University , Niigata 951-8585, Japan
                [3 ]Department of Health Science, School of Pharmacology, Nihon University , Chiba 274-8555, Japan
                Author notes
                Article
                ncomms12926
                10.1038/ncomms12926
                5056436
                27686624
                b4c9423e-7f44-4a60-8124-46acbbb2ac50
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 12 September 2015
                : 16 August 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article