31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack : ROS signaling and stomatal movement

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells.

          Drought is a major threat to agricultural production. Plants synthesize the hormone abscisic acid (ABA) in response to drought, triggering a signalling cascade in guard cells that results in stomatal closure, thus reducing water loss. ABA triggers an increase in cytosolic calcium in guard cells ([Ca2+]cyt) that has been proposed to include Ca2+ influx across the plasma membrane. However, direct recordings of Ca2+ currents have been limited and the upstream activation mechanisms of plasma membrane Ca2+ channels remain unknown. Here we report activation of Ca2+-permeable channels in the plasma membrane of Arabidopsis guard cells by hydrogen peroxide. The H2O2-activated Ca2+ channels mediate both influx of Ca2+ in protoplasts and increases in [Ca2+]cyt in intact guard cells. ABA induces the production of H2O2 in guard cells. If H2O2 production is blocked, ABA-induced closure of stomata is inhibited. Moreover, activation of Ca2+ channels by H2O2 and ABA- and H2O2-induced stomatal closing are disrupted in the recessive ABA-insensitive mutant gca2. These data indicate that ABA-induced H2O2 production and the H2O2-activated Ca2+ channels are important mechanisms for ABA-induced stomatal closing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response.

            Reactive oxygen intermediates (ROI) are strongly associated with plant defense responses. The origin of these ROI has been controversial. Arabidopsis respiratory burst oxidase homologues (rboh genes) have been proposed to play a role in ROI generation. We analyzed lines carrying dSpm insertions in the highly expressed AtrbohD and AtrbohF genes. Both are required for full ROI production observed during incompatible interactions with the bacterial pathogen Pseudomonas syringae pv. tomato DC3000(avrRpm1) and the oomycete parasite Peronospora parasitica. We also observed reduced cell death, visualized by trypan blue stain and reduced electrolyte leakage, in the Atrboh mutants after DC3000(avrRpm1) inoculation. However, enhanced cell death is observed after infection of mutant lines with P. parasitica. Paradoxically, although atrbohD mutation eliminated the majority of total ROI production, atrbohF mutation exhibited the strongest effect on cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis.

              Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell-expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA-induced stomatal closing, ABA promotion of ROS production, ABA-induced cytosolic Ca(2+) increases and ABA- activation of plasma membrane Ca(2+)-permeable channels in guard cells. Exogenous H(2)O(2) rescues both Ca(2+) channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate-limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction.
                Bookmark

                Author and article information

                Journal
                Journal of Integrative Plant Biology
                J. Integr. Plant Biol.
                Wiley
                16729072
                September 2018
                September 2018
                July 03 2018
                : 60
                : 9
                : 805-826
                Affiliations
                [1 ]State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences; China Agricultural University; Beijing 100193 China
                [2 ]Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology; Henan University; Kaifeng 475001 China
                [3 ]Key Lab of Plant Stress Research; College of Life Science; Shandong Normal University; Ji'nan 250000 China
                [4 ]State Key Laboratory of Plant Genomics; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
                [5 ]Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences; University of Helsinki; 00014 Helsinki Finland
                [6 ]Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai 200032 China
                [7 ]Department of Horticulture and Landscape Architecture; Purdue University; West Lafayette IN 47907 USA
                Article
                10.1111/jipb.12654
                29660240
                b4b46e36-cf17-4cbe-8e0f-c0cdb60c548a
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article