238
views
0
recommends
+1 Recommend
0 collections
    11
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Associating Genes and Protein Complexes with Disease via Network Propagation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A fundamental challenge in human health is the identification of disease-causing genes. Recently, several studies have tackled this challenge via a network-based approach, motivated by the observation that genes causing the same or similar diseases tend to lie close to one another in a network of protein-protein or functional interactions. However, most of these approaches use only local network information in the inference process and are restricted to inferring single gene associations. Here, we provide a global, network-based method for prioritizing disease genes and inferring protein complex associations, which we call PRINCE. The method is based on formulating constraints on the prioritization function that relate to its smoothness over the network and usage of prior information. We exploit this function to predict not only genes but also protein complex associations with a disease of interest. We test our method on gene-disease association data, evaluating both the prioritization achieved and the protein complexes inferred. We show that our method outperforms extant approaches in both tasks. Using data on 1,369 diseases from the OMIM knowledgebase, our method is able (in a cross validation setting) to rank the true causal gene first for 34% of the diseases, and infer 139 disease-related complexes that are highly coherent in terms of the function, expression and conservation of their member proteins. Importantly, we apply our method to study three multi-factorial diseases for which some causal genes have been found already: prostate cancer, alzheimer and type 2 diabetes mellitus. PRINCE's predictions for these diseases highly match the known literature, suggesting several novel causal genes and protein complexes for further investigation.

          Author Summary

          Understanding the genetic background of diseases is crucial to medical research, with implications in diagnosis, treatment and drug development. As molecular approaches to this challenge are time consuming and costly, computational approaches offer an efficient alternative. Such approaches aim at prioritizing genes in a genomic interval of interest according to their predicted strength-of-association with a given disease. State-of-the-art prioritization problems are based on the observation that genes causing similar diseases tend to lie close to one another in a network of protein-protein interactions. Here we develop a novel prioritization approach that uses the network data in a global manner and can tie not only single genes but also whole protein machineries with a given disease. Our method, PRINCE, is shown to outperform previous methods in both the gene prioritization task and the protein complex task. Applying PRINCE to prostate cancer, alzheimer's disease and type 2 diabetes, we are able to infer new causal genes and related protein complexes with high confidence.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene Ontology: tool for the unification of biology

            Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The genetic association database.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                January 2010
                January 2010
                15 January 2010
                : 6
                : 1
                : e1000641
                Affiliations
                [1 ]School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
                [2 ]Department of Computer Science, Technion, Haifa, Israel
                University of British Columbia, Canada
                Author notes

                Conceived and designed the experiments: OV OM ER TS RS. Performed the experiments: OV OM. Analyzed the data: OV OM. Contributed reagents/materials/analysis tools: OV OM TS. Wrote the paper: OV OM RS. Reviewed the paper: ER, TS. Consulted on experiments, methods and conceptual approaches: ER. Contributed the majority of the data sets used in experiments: TS.

                Article
                09-PLCB-RA-0944R2
                10.1371/journal.pcbi.1000641
                2797085
                20090828
                b4a757d0-87e1-4241-b9e5-ab0837ab8156
                Vanunu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 6 August 2009
                : 14 December 2009
                Page count
                Pages: 9
                Categories
                Research Article
                Computational Biology/Genomics
                Computational Biology/Systems Biology
                Diabetes and Endocrinology/Type 2 Diabetes
                Genetics and Genomics/Bioinformatics
                Genetics and Genomics/Disease Models
                Genetics and Genomics/Genetics of Disease
                Neurological Disorders/Alzheimer Disease
                Oncology/Prostate Cancer

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article