There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Mesenchymal stem cells (MSCs) have been isolated from the pulp tissue of permanent teeth (dental pulp stem cells or DPSCs) and deciduous teeth (stem cells from human exfoliated deciduous teeth). We recently discovered another type of MSCs in the apical papilla of human immature permanent teeth termed stem cells from the apical papilla (SCAP). Here, we further characterized the apical papilla tissue and stem cell properties of SCAP using histologic, immunohistochemical, and immunocytofluorescent analyses. We found that the apical papilla is distinctive to the pulp in terms of containing less cellular and vascular components than those in the pulp. Cells in the apical papilla proliferated 2- to 3-fold greater than those in the pulp in organ cultures. Both SCAP and DPSCs were as potent in osteo/dentinogenic differentiation as MSCs from bone marrows, whereas they were weaker in adipogenic potential. The immunophenotype of SCAP is similar to that of DPSCs on the osteo/dentinogenic and growth factor receptor gene profiles. Double-staining experiments showed that STRO-1 coexpressed with dentinogenic markers such as bone sialophosphoprotein, osteocalcin, and growth factors FGFR1 and TGFbetaRI in cultured SCAP. Additionally, SCAP express a wide variety of neurogenic markers such as nestin and neurofilament M upon stimulation with a neurogenic medium. We conclude that SCAP are similar to DPSCs but a distinct source of potent dental stem/progenitor cells. Their implications in root development and apexogenesis are discussed.
Some clinical case reports have shown that immature permanent teeth with periradicular periodontitis or abscess can undergo apexogenesis after conservative endodontic treatment. A call for a paradigm shift and new protocol for the clinical management of these cases has been brought to attention. Concomitantly, a new population of mesenchymal stem cells residing in the apical papilla of permanent immature teeth recently has been discovered and was termed stem cells from the apical papilla (SCAP). These stem cells appear to be the source of odontoblasts that are responsible for the formation of root dentin. Conservation of these stem cells when treating immature teeth may allow continuous formation of the root to completion. This article reviews current findings on the isolation and characterization of these stem cells. The potential role of these stem cells in the following respects will be discussed: (1) their contribution in continued root maturation in endodontically treated immature teeth with periradicular periodontitis or abscess and (2) their potential utilization for pulp/dentin regeneration and bioroot engineering.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.