13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Detection and Antimicrobial Resistance Profile of Enteropathogenic (EPEC) and Shigatoxigenic Escherichia coli (STEC) in Conventional and Organic Broiler Chickens

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ABSTRACT Enteropatogenic Escherichia coli (EPEC) and shigatoxigenic E. coli (STEC), are generally poultry and poultry product isolate and can cause serious human infections. Many strains may become resistant to various antimicrobials, which can hinder the treatment of bacterial diseases. Organic farming seeks to avoid the selection and frequency of antimicrobial-resistant bacteria. This study aims to verify the resistance of EPEC and STEC from organic and conventional (industrial) broiler isolates to antimicrobials. All isolates were submitted to disk diffusion test with tetracycline, gentamicin, enrofloxacin, ceftriaxone and amoxicillin + clavulanate (TET, GEN, ENO, CTX, AMC) and PCR to detect specific virulence genes for EPEC and STEC. A total of 297 E. coli strains were isolated, 213 from conventional. In organic broiler, 84 strains were isolated. The strains from the conventional broiler isolates were resistant to five antimicrobials tested: TET 48.82% (104/213), ENO 28.17% (60/213), CTX 15.49% (33/213), GEN 14.55% (31/213), and AMC 7.04% (15/213), and 9.86% (21/213) were considered multidrug-resistant. Organic chicken strains were resistant to four of the antimicrobials tested: TET 35.7% (30/84), ENO 9.5% (8/84), CTX 2.4% (2/84), GEN 4.8% (4/84). Of the strains from the organic broiler chicken isolates, only 1.2% (1/84) was considered multidrug-resistant. No EPEC and STEC were found in the organic chicken samples. The multidrug resistance was characterized in 9.52% (2/21) of the EPEC and 4.76% (1/21) of the STEC. The study demonstrated the absence of EPEC and STEC strains in organic broilers and carcasses and a lower frequency of multiresistant strains compared to conventional breeding.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.

          Many different definitions for multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria are being used in the medical literature to characterize the different patterns of resistance found in healthcare-associated, antimicrobial-resistant bacteria. A group of international experts came together through a joint initiative by the European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC), to create a standardized international terminology with which to describe acquired resistance profiles in Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae (other than Salmonella and Shigella), Pseudomonas aeruginosa and Acinetobacter spp., all bacteria often responsible for healthcare-associated infections and prone to multidrug resistance. Epidemiologically significant antimicrobial categories were constructed for each bacterium. Lists of antimicrobial categories proposed for antimicrobial susceptibility testing were created using documents and breakpoints from the Clinical Laboratory Standards Institute (CLSI), the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the United States Food and Drug Administration (FDA). MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories, XDR was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories) and PDR was defined as non-susceptibility to all agents in all antimicrobial categories. To ensure correct application of these definitions, bacterial isolates should be tested against all or nearly all of the antimicrobial agents within the antimicrobial categories and selective reporting and suppression of results should be avoided. © 2011 European Society of Clinical Microbiology and Infectious Diseases. No claim to original US government works.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods.

            Escherichia coli isolates taken from environments considered to have low and high enteric disease potential for humans were screened against 12 antibiotics to determine the prevalence of multiple antibiotic resistance among the isolates of these environments. It was determined that multiple-antibiotic-resistant E. coli organisms exist in large numbers within the major reservoirs of enteric diseases for humans while existing in comparatively low numbers elsewhere. These differences provide a method for distinguishing high-risk contamination of foods by indexing the frequency with which multiple-antibiotic-resistant E. coli organisms occur among isolates taken from a sample.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Risk factors for the hemolytic uremic syndrome in children infected with Escherichia coli O157:H7: a multivariable analysis.

              Escherichia coli O157:H7 is the leading cause of hemolytic uremic syndrome (HUS). Risk factors for development of this complication warrant identification. We enrolled children infected with E. coli O157:H7 within 1 week of the onset of diarrhea in this prospective cohort study. The study was conducted in 5 states over 9.5 years . The primary and secondary outcomes were HUS (hematocrit upper limit of normal for age) and oligoanuric HUS. Univariate and multivariable and ordinal multinomial regression analyses were used to test associations between factors apparent during the first week of illness and outcomes. Of the 259 children analyzed, 36 (14%) developed HUS. Univariate analysis demonstrated that children who received antibiotics during the diarrhea phase more frequently developed HUS than those who did not (36% vs 12%; P = .001). The higher rate of HUS was observed across all antibiotic classes used. In multivariable analysis, a higher leukocyte count (adjusted odds ratios [aOR] 1.10; 95% CI, 1.03-1.19), vomiting (aOR 3.05; 95% CI, 1.23-7.56), and exposure to antibiotics (aOR 3.62; 95% CI, 1.23-10.6) during the first week of onset of illness were each independently associated with development of HUS. Multinomial ordinal logistic regression confirmed that initial leukocyte count and antibiotic use were independently associated with HUS and, additionally, these variables were each associated with the development of oligoanuric HUS. Antibiotic use during E. coli O157:H7 infections is associated with a higher rate of subsequent HUS and should be avoided.
                Bookmark

                Author and article information

                Journal
                rbca
                Brazilian Journal of Poultry Science
                Braz. J. Poult. Sci.
                Fundação de Apoio à Ciência e Tecnologia Avicolas (Campinas, SP, Brazil )
                1516-635X
                1806-9061
                2023
                : 25
                : 3
                : eRBCA-2022-1755
                Affiliations
                [1] Niterói Rio de Janeiro orgnameUniversidade Federal Fluminense orgdiv1Department of Collective Veterinary Health and Public Health Brazil
                Article
                S1516-635X2023000300314 S1516-635X(23)02500300314
                10.1590/1806-9061-2022-1755
                b49815a3-19c9-4ff7-ac83-b6ba661a54c6

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 11 July 2023
                : 19 December 2022
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 44, Pages: 0
                Product

                SciELO Brazil

                Categories
                Original Articles

                broilers,organic,Escherichia coli,Antimicrobial-resistant

                Comments

                Comment on this article