180
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The functional role of long non-coding RNAs and epigenetics

      review-article
      1 ,
      Biological Procedures Online
      BioMed Central
      lncRNAs, Epigenetics, Transcriptional repression, Chromatin

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Long non-coding RNAs (lncRNAs) are non-protein coding transcripts longer than 200 nucleotides. The post-transcriptional regulation is influenced by these lncRNAs by interfering with the microRNA pathways, involving in diverse cellular processes. The regulation of gene expression by lncRNAs at the epigenetic level, transcriptional and post-transcriptional level have been well known and widely studied. Recent recognition that lncRNAs make effects in many biological and pathological processes such as stem cell pluripotency, neurogenesis, oncogenesis and etc. This review will focus on the functional roles of lncRNAs in epigenetics and related research progress will be summarized.

          Related collections

          Most cited references146

          • Record: found
          • Abstract: found
          • Article: not found

          The transcriptional landscape of the mammalian genome.

          This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RNA maps reveal new RNA classes and a possible function for pervasive transcription.

            Significant fractions of eukaryotic genomes give rise to RNA, much of which is unannotated and has reduced protein-coding potential. The genomic origins and the associations of human nuclear and cytosolic polyadenylated RNAs longer than 200 nucleotides (nt) and whole-cell RNAs less than 200 nt were investigated in this genome-wide study. Subcellular addresses for nucleotides present in detected RNAs were assigned, and their potential processing into short RNAs was investigated. Taken together, these observations suggest a novel role for some unannotated RNAs as primary transcripts for the production of short RNAs. Three potentially functional classes of RNAs have been identified, two of which are syntenically conserved and correlate with the expression state of protein-coding genes. These data support a highly interleaved organization of the human transcriptome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The DNA methyltransferases of mammals.

              T Bestor (2000)
              The biological significance of 5-methylcytosine was in doubt for many years, but is no longer. Through targeted mutagenesis in mice it has been learnt that every protein shown by biochemical tests to be involved in the establishment, maintenance or interpretation of genomic methylation patterns is encoded by an essential gene. A human genetic disorder (ICF syndrome) has recently been shown to be caused by mutations in the DNA methyltransferase 3B (DNMT3B) gene. A second human disorder (Rett syndrome) has been found to result from mutations in the MECP2 gene, which encodes a protein that binds to methylated DNA. Global genome demethylation caused by targeted mutations in the DNA methyltransferase-1 (Dnmt1) gene has shown that cytosine methylation plays essential roles in X-inactivation, genomic imprinting and genome stabilization. The majority of genomic 5-methylcytosine is now known to enforce the transcriptional silence of the enormous burden of transposons and retroviruses that have accumulated in the mammalian genome. It has also become clear that programmed changes in methylation patterns are less important in the regulation of mammalian development than was previously believed. Although a number of outstanding questions have yet to be answered (one of these questions involves the nature of the cues that designate sites for methylation at particular stages of gametogenesis and early development), studies of DNA methyltransferases are likely to provide further insights into the biological functions of genomic methylation patterns.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biol Proced Online
                Biol Proced Online
                Biological Procedures Online
                BioMed Central
                1480-9222
                2014
                15 September 2014
                : 16
                : 11
                Affiliations
                [1 ]Department of respiratory medicine, Fuyong People’s Hospital, Baoan District, Shenzhen 518103, Guangdong, People’s Republic of China
                Article
                1480-9222-16-11
                10.1186/1480-9222-16-11
                4177375
                25276098
                b47969d7-f8cc-4cb3-b0e5-750646c8ee2d
                Copyright © 2014 Cao; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 9 June 2014
                : 6 September 2014
                Categories
                Review

                Life sciences
                lncrnas,epigenetics,transcriptional repression,chromatin
                Life sciences
                lncrnas, epigenetics, transcriptional repression, chromatin

                Comments

                Comment on this article