3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cooperatively designed aptamer-PROTACs for spatioselective degradation of nucleocytoplasmic shuttling protein for enhanced combinational therapy†

      research-article
      a , a , a , b , c , , a ,
      Chemical Science
      The Royal Society of Chemistry

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nucleocytoplasmic shuttling proteins (NSPs) have emerged as a promising class of therapeutic targets for many diseases. However, most NSPs-based therapies largely rely on small-molecule inhibitors with limited efficacy and off-target effects. Inspired by proteolysis targeting chimera (PROTAC) technology, we report a new archetype of PROTAC (PS-ApTCs) by introducing a phosphorothioate-modified aptamer to a CRBN ligand, realizing tumor-targeting and spatioselective degradation of NSPs with improved efficacy. Using nucleolin as a model, we demonstrate that PS-ApTCs is capable of effectively degrading nucleolin in the target cell membrane and cytoplasm but not in the nucleus, through the disruption of nucleocytoplasmic shuttling. Moreover, PS-ApTCs exhibits superior antiproliferation, pro-apoptotic, and cell cycle arrest potencies. Importantly, we demonstrate that a combination of PS-ApTCs-mediated nucleolin degradation with aptamer–drug conjugate-based chemotherapy enables a synergistic effect on tumor inhibition. Collectively, PS-ApTCs could expand the PROTAC toolbox to more targets in subcellular localization and accelerate the discovery of new combinational therapeutic approaches.

          Abstract

          Combination of PS-ApTCs-mediated nucleolin degradation with aptamer–drug conjugate-based chemotherapy enables a synergistic effect on tumor inhibition.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation.

          The intracellular levels of many proteins are regulated by ubiquitin-dependent proteolysis. One of the best-characterized enzymes that catalyzes the attachment of ubiquitin to proteins is a ubiquitin ligase complex, Skp1-Cullin-F box complex containing Hrt1 (SCF). We sought to artificially target a protein to the SCF complex for ubiquitination and degradation. To this end, we tested methionine aminopeptidase-2 (MetAP-2), which covalently binds the angiogenesis inhibitor ovalicin. A chimeric compound, protein-targeting chimeric molecule 1 (Protac-1), was synthesized to recruit MetAP-2 to SCF. One domain of Protac-1 contains the I kappa B alpha phosphopeptide that is recognized by the F-box protein beta-TRCP, whereas the other domain is composed of ovalicin. We show that MetAP-2 can be tethered to SCF(beta-TRCP), ubiquitinated, and degraded in a Protac-1-dependent manner. In the future, this approach may be useful for conditional inactivation of proteins, and for targeting disease-causing proteins for destruction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PROTAC targeted protein degraders: the past is prologue

            Targeted protein degradation (TPD) is an emerging therapeutic modality with the potential to tackle disease-causing proteins that have historically been highly challenging to target with conventional small molecules. In the 20 years since the concept of a proteolysis-targeting chimera (PROTAC) molecule harnessing the ubiquitin–proteasome system to degrade a target protein was reported, TPD has moved from academia to industry, where numerous companies have disclosed programmes in preclinical and early clinical development. With clinical proof-of-concept for PROTAC molecules against two well-established cancer targets provided in 2020, the field is poised to pursue targets that were previously considered ‘undruggable’. In this Review, we summarize the first two decades of PROTAC discovery and assess the current landscape, with a focus on industry activity. We then discuss key areas for the future of TPD, including establishing the target classes for which TPD is most suitable, expanding the use of ubiquitin ligases to enable precision medicine and extending the modality beyond oncology. Targeted protein degradation with proteolysis-targeting chimeras (PROTACs) has the potential to tackle disease-causing proteins that have historically been highly challenging to target with conventional small molecules. This article summarizes the first two decades of PROTAC discovery and discusses key areas for the future of this therapeutic modality, including establishing the target classes for which it is most suitable and extending its application beyond oncology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation.

              The development of effective pharmacological inhibitors of multidomain scaffold proteins, notably transcription factors, is a particularly challenging problem. In part, this is because many small-molecule antagonists disrupt the activity of only one domain in the target protein. We devised a chemical strategy that promotes ligand-dependent target protein degradation using as an example the transcriptional coactivator BRD4, a protein critical for cancer cell growth and survival. We appended a competitive antagonist of BET bromodomains to a phthalimide moiety to hijack the cereblon E3 ubiquitin ligase complex. The resultant compound, dBET1, induced highly selective cereblon-dependent BET protein degradation in vitro and in vivo and delayed leukemia progression in mice. A second series of probes resulted in selective degradation of the cytosolic protein FKBP12. This chemical strategy for controlling target protein stability may have implications for therapeutically targeting previously intractable proteins.
                Bookmark

                Author and article information

                Journal
                Chem Sci
                Chem Sci
                SC
                CSHCBM
                Chemical Science
                The Royal Society of Chemistry
                2041-6520
                2041-6539
                29 November 2023
                20 December 2023
                29 November 2023
                : 15
                : 1
                : 134-145
                Affiliations
                [a ] State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China jing15209791@ 123456nju.edu.cn
                [b ] Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
                [c ] Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou 310022 China phzhang@ 123456ucas.ac.cn
                Author information
                https://orcid.org/0000-0002-6868-2947
                https://orcid.org/0000-0003-3917-8343
                https://orcid.org/0000-0002-1041-793X
                Article
                d3sc04249a
                10.1039/d3sc04249a
                10732009
                38131089
                b46bb9d4-d23b-42b4-ad76-7526ef656ac5
                This journal is © The Royal Society of Chemistry
                History
                : 14 August 2023
                : 21 November 2023
                Page count
                Pages: 12
                Funding
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                Award ID: 22274072
                Award ID: 21877032
                Funded by: Natural Science Foundation of Jiangsu Province, doi 10.13039/501100004608;
                Award ID: 20200303
                Categories
                Chemistry
                Custom metadata
                Paginated Article

                Comments

                Comment on this article