4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Targeting polyketide synthase 13 for the treatment of tuberculosis

      , , , , , , ,
      European Journal of Medicinal Chemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="first" dir="auto" id="d1329173e134">Tuberculosis (TB) is one of the most threatening diseases for humans, however, the drug treatment strategy for TB has been stagnant and inadequate, which could not meet current treatment needs. TB is caused by Mycobacterial tuberculosis, which has a unique cell wall that plays a crucial role in its growth, virulence, and drug resistance. Polyketide synthase 13 (Pks13) is an essential enzyme that catalyzes the biosynthesis of the cell wall and its critical role is only found in Mycobacteria. Therefore, Pks13 is a promising target for developing novel anti-TB drugs. In this review, we first introduced the mechanism of targeting Pks13 for TB treatment. Subsequently, we focused on summarizing the recent advance of Pks13 inhibitors, including the challenges encountered during their discovery and the rational design strategies employed to overcome these obstacles, which could be helpful for the development of novel Pks13 inhibitors in the future. </p>

          Related collections

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: not found

          A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis.

          The incidence of tuberculosis has been increasing substantially on a worldwide basis over the past decade, but no tuberculosis-specific drugs have been discovered in 40 years. We identified a diarylquinoline, R207910, that potently inhibits both drug-sensitive and drug-resistant Mycobacterium tuberculosis in vitro (minimum inhibitory concentration 0.06 mug/ml). In mice, R207910 exceeded the bactericidal activities of isoniazid and rifampin by at least 1 log unit. Substitution of drugs included in the World Health Organization's first-line tuberculosis treatment regimen (rifampin, isoniazid, and pyrazinamide) with R207910 accelerated bactericidal activity, leading to complete culture conversion after 2 months of treatment in some combinations. A single dose of R207910 inhibited mycobacterial growth for 1 week. Plasma levels associated with efficacy in mice were well tolerated in healthy human volunteers. Mutants selected in vitro suggest that the drug targets the proton pump of adenosine triphosphate (ATP) synthase.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            WHO global progress report on tuberculosis elimination

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis.

              Mycobacterium tuberculosis is known to synthesize alpha-, methoxy-, and keto-mycolic acids. We propose a detailed pathway to the biosynthesis of all mycolic acids in M. tuberculosis. Fatty acid synthetase I provides C(20)-S-coenzyme A to the fatty acid synthetase II system (FAS-IIA). Modules of FAS-IIA and FAS-IIB introduce cis unsaturation at two locations on a growing meroacid chain to yield three different forms of cis,cis-diunsaturated fatty acids (intermediates to alpha-, methoxy-, and keto-meroacids). These are methylated, and the mature meroacids and carboxylated C(26)-S-acyl carrier protein enter into the final Claisen-type condensation with polyketide synthase-13 (Pks13) to yield mycolyl-S-Pks13. We list candidate genes in the genome encoding the proposed dehydrase and isomerase in the FAS-IIA and FAS-IIB modules. We propose that the processing of mycolic acids begins by transfer of mycolic acids from mycolyl-S-Pks13 to d-mannopyranosyl-1-phosphoheptaprenol to yield 6-O-mycolyl-beta-d-mannopyranosyl-1-phosphoheptaprenol and then to trehalose 6-phosphate to yield phosphorylated trehalose monomycolate (TMM-P). Phosphatase releases the phosphate group to yield TMM, which is immediately transported outside the cell by the ABC transporter. Antigen 85 then catalyzes the transfer of a mycolyl group from TMM to the cell wall arabinogalactan and to other TMMs to produce arabinogalactan-mycolate and trehalose dimycolate, respectively. We list candidate genes in the genome that encode the proposed mycolyltransferases I and II, phosphatase, and ABC transporter. The enzymes within this total pathway are targets for new drug discovery.
                Bookmark

                Author and article information

                Contributors
                Journal
                European Journal of Medicinal Chemistry
                European Journal of Medicinal Chemistry
                Elsevier BV
                02235234
                November 2023
                November 2023
                : 259
                : 115702
                Article
                10.1016/j.ejmech.2023.115702
                37544185
                b4556836-b523-4473-8dc6-51fa55a5f5a6
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article