4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Predictive Model Based on Inflammatory and Coagulation Indicators for Sepsis-Induced Acute Kidney Injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Sepsis-induced acute kidney injury (S-AKI) is associated with systemic inflammatory responses and coagulation system dysfunction, and it is associated with an increased risk of mortality. However, there was no study to explore the predictive value of inflammatory and coagulation indicators for S-AKI.

          Methods

          In this retrospective study, 1051 sepsis patients were identified and divided into a training cohort (75%, n = 787) and a validation cohort (25%, n = 264) in chronological order according to the date they were admitted. Univariate analyses and multivariate logistic regression analyses were performed to identify the independent predictors of S-AKI. The logistic regression analyses (enter methods) were used to conducted the prediction models. The ROC curves were used to determine the predictive value of the constructed models on S-AKI. To test whether the increase in the AUC is significant, we used a two-sided test for ROC curves available online ( http://vassarstats.net/roc_comp.html ). The secondary outcome was different AKI stages and major adverse kidney events within 30 days (MAKE30). Stage 3B of S-AKI was defined as both meeting the stage 3 criteria [increase of Cr level by > 300% (≥ 4.0 mg/dL with an acute increase of ≥ 0.5 mg/dL) and/or UO < 0.3 mL/kg/h for > 24 h or anuria for > 12 h and/or acute kidney replacement therapy] and having cystatin C positive. MAKE30 were a composite of death, new renal replacement therapy (RRT), or persistent renal dysfunction (PRD).

          Results

          We discovered that cardiovascular disease, white blood cell (WBC), mean arterial pressure (MAP), platelet (PLT), serum procalcitonin (PCT), prothrombin time activity (PTA), and thrombin time (TT) were independent predictors for S-AKI. The predictive value (AUC = 0.855) of the simplest model 3 (constructed with PLT, PCT, and PTA), with a sensitivity of 77.6% and a specificity of 82.4%, had a similar predictive value comparing with the model 1 (AUC = 0.872) and the model 2 (AUC = 0.864) in the training cohort (P > 0.05). Compared with the model 1 (AUC = 0.888) and the model 2 (AUC = 0.887), the model 3 (AUC = 0.887) had a similar predictive value in the validation cohort. Moreover, model 3 had the best predictive power for predicting S-AKI in the stage 3 (AUC = 0.777), especially in stage 3B (AUC = 0.771). Finally, the model 3 (AUC = 0.843) had perfect predictive power for predicting MAKE30 in sepsis patients.

          Conclusion

          Within 24 hours after admission, the simplest model 3 (constructed with PLT, PCT, and PTA) might be a robust predictor of the S-AKI in sepsis patients, providing information for timely and efficient intervention.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: found

          The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).

          Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The meaning and use of the area under a receiver operating characteristic (ROC) curve.

            A representation and interpretation of the area under a receiver operating characteristic (ROC) curve obtained by the "rating" method, or by mathematical predictions based on patient characteristics, is presented. It is shown that in such a setting the area represents the probability that a randomly chosen diseased subject is (correctly) rated or ranked with greater suspicion than a randomly chosen non-diseased subject. Moreover, this probability of a correct ranking is the same quantity that is estimated by the already well-studied nonparametric Wilcoxon statistic. These two relationships are exploited to (a) provide rapid closed-form expressions for the approximate magnitude of the sampling variability, i.e., standard error that one uses to accompany the area under a smoothed ROC curve, (b) guide in determining the size of the sample required to provide a sufficiently reliable estimate of this area, and (c) determine how large sample sizes should be to ensure that one can statistically detect differences in the accuracy of diagnostic techniques.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline.

              The Kidney Disease: Improving Global Outcomes (KDIGO) organization developed clinical practice guidelines in 2012 to provide guidance on the evaluation, management, and treatment of chronic kidney disease (CKD) in adults and children who are not receiving renal replacement therapy. The KDIGO CKD Guideline Development Work Group defined the scope of the guideline, gathered evidence, determined topics for systematic review, and graded the quality of evidence that had been summarized by an evidence review team. Searches of the English-language literature were conducted through November 2012. Final modification of the guidelines was informed by the KDIGO Board of Directors and a public review process involving registered stakeholders. The full guideline included 110 recommendations. This synopsis focuses on 10 key recommendations pertinent to definition, classification, monitoring, and management of CKD in adults.
                Bookmark

                Author and article information

                Journal
                J Inflamm Res
                J Inflamm Res
                jir
                Journal of Inflammation Research
                Dove
                1178-7031
                11 August 2022
                2022
                : 15
                : 4561-4571
                Affiliations
                [1 ]Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University , Xi’an, 710061, People’s Republic of China
                [2 ]Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University , Xi’an, 710061, People’s Republic of China
                [3 ]Department of SICU, The First Affiliated Hospital of Xi’an Jiaotong University , Xi’an, 710061, People’s Republic of China
                Author notes
                Correspondence: Chang Liu; Jingyao Zhang, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University , Xi’an, 710061, People’s Republic of China, Tel +86-29-85323900, Fax +86-29-85324642, Email liuchangdoctor@163.com; you12ouy@163.com
                Author information
                http://orcid.org/0000-0002-2409-6583
                http://orcid.org/0000-0002-8227-9396
                Article
                372246
                10.2147/JIR.S372246
                9377403
                35979508
                b436be63-a42e-4775-a5df-4ce33705305b
                © 2022 Xin et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 25 April 2022
                : 30 July 2022
                Page count
                Figures: 3, Tables: 9, References: 43, Pages: 11
                Funding
                Funded by: National Nature Science Foundation of China;
                This study was supported by the National Nature Science Foundation of China (No. 82072145);the Natural Science Foundation of Shaanxi Province (2020JM-373); the First Affiliated Hospital of Xi’an Jiaotong University (Establishment of a Model for Early Prediction, Diagnosis and Monitoring of Sepsis: A Cross Regional Multicenter Cohort Study; No. XJTU1AF-CRF-2020-003).
                Categories
                Original Research

                Immunology
                inflammation,coagulation,prediction model,sepsis,acute kidney injury
                Immunology
                inflammation, coagulation, prediction model, sepsis, acute kidney injury

                Comments

                Comment on this article