7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Eccentric Exercise to Enhance Neuromuscular Control

      research-article
      , PhD, ATC * , , , PhD, ATC , , PhD, ATC , , PhD, ATC § ,
      Sports Health
      SAGE Publications
      injury prevention, neuromuscular, eccentric exercise

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Context:

          Neuromuscular alterations are a major causal factor of primary and secondary injuries. Though injury prevention programs have experienced some success, rates of injuries have not declined, and after injury, individuals often return to activity with functionality below clinical recommendations. Considering alternative therapies to the conventional concentric exercise approach, such as one that can target neuromuscular injury risk and postinjury alterations, may provide for more effective injury prevention and rehabilitation protocols.

          Evidence Acquisition:

          Peer-reviewed sources available on the Web of Science and MEDLINE databases from 2000 through 2016 were gathered using searches associated with the keywords eccentric exercise, injury prevention, and neuromuscular control.

          Hypothesis:

          Eccentric exercise will reduce injury risk by targeting specific neural and morphologic alterations that precipitate neuromuscular dysfunction.

          Study Design:

          Clinical review.

          Level of Evidence:

          Level 4.

          Results:

          Neuromuscular control is influenced by alterations in muscle morphology and neural activity. Eccentric exercise beneficially modifies several underlying factors of muscle morphology (fiber typing, cross-sectional area, working range, and pennation angle), and emerging evidence indicates that eccentric exercise is also beneficial to peripheral and central neural activity (alpha motorneuron recruitment/firing, sarcolemma activity, corticospinal excitability, and brain activation).

          Conclusion:

          There is mounting evidence that eccentric exercise is not only a therapeutic intervention influencing muscle morphology but also targets unique alterations in neuromuscular control, influencing injury risk.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study.

          Female athletes participating in high-risk sports suffer anterior cruciate ligament injury at a 4- to 6-fold greater rate than do male athletes. Prescreened female athletes with subsequent anterior cruciate ligament injury will demonstrate decreased neuromuscular control and increased valgus joint loading, predicting anterior cruciate ligament injury risk. Cohort study; Level of evidence, 2. There were 205 female athletes in the high-risk sports of soccer, basketball, and volleyball prospectively measured for neuromuscular control using 3-dimensional kinematics (joint angles) and joint loads using kinetics (joint moments) during a jump-landing task. Analysis of variance as well as linear and logistic regression were used to isolate predictors of risk in athletes who subsequently ruptured the anterior cruciate ligament. Nine athletes had a confirmed anterior cruciate ligament rupture; these 9 had significantly different knee posture and loading compared to the 196 who did not have anterior cruciate ligament rupture. Knee abduction angle (P<.05) at landing was 8 degrees greater in anterior cruciate ligament-injured than in uninjured athletes. Anterior cruciate ligament-injured athletes had a 2.5 times greater knee abduction moment (P<.001) and 20% higher ground reaction force (P<.05), whereas stance time was 16% shorter; hence, increased motion, force, and moments occurred more quickly. Knee abduction moment predicted anterior cruciate ligament injury status with 73% specificity and 78% sensitivity; dynamic valgus measures showed a predictive r2 of 0.88. Knee motion and knee loading during a landing task are predictors of anterior cruciate ligament injury risk in female athletes. Female athletes with increased dynamic valgus and high abduction loads are at increased risk of anterior cruciate ligament injury. The methods developed may be used to monitor neuromuscular control of the knee joint and may help develop simpler measures of neuromuscular control that can be used to direct female athletes to more effective, targeted interventions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport.

            Athletes who return to sport participation after anterior cruciate ligament reconstruction (ACLR) have a higher risk of a second anterior cruciate ligament injury (either reinjury or contralateral injury) compared with non-anterior cruciate ligament-injured athletes. Prospective measures of neuromuscular control and postural stability after ACLR will predict relative increased risk for a second anterior cruciate ligament injury. Cohort study (prognosis); Level of evidence, 2. Fifty-six athletes underwent a prospective biomechanical screening after ACLR using 3-dimensional motion analysis during a drop vertical jump maneuver and postural stability assessment before return to pivoting and cutting sports. After the initial test session, each subject was followed for 12 months for occurrence of a second anterior cruciate ligament injury. Lower extremity joint kinematics, kinetics, and postural stability were assessed and analyzed. Analysis of variance and logistic regression were used to identify predictors of a second anterior cruciate ligament injury. Thirteen athletes suffered a subsequent second anterior cruciate ligament injury. Transverse plane hip kinetics and frontal plane knee kinematics during landing, sagittal plane knee moments at landing, and deficits in postural stability predicted a second injury in this population (C statistic = 0.94) with excellent sensitivity (0.92) and specificity (0.88). Specific predictive parameters included an increase in total frontal plane (valgus) movement, greater asymmetry in internal knee extensor moment at initial contact, and a deficit in single-leg postural stability of the involved limb, as measured by the Biodex stability system. Hip rotation moment independently predicted second anterior cruciate ligament injury (C = 0.81) with high sensitivity (0.77) and specificity (0.81). Altered neuromuscular control of the hip and knee during a dynamic landing task and postural stability deficits after ACLR are predictors of a second anterior cruciate ligament injury after an athlete is released to return to sport.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis.

              The aim of this systematic review was to determine if eccentric exercise is superior to concentric exercise in stimulating gains in muscle strength and mass. Meta-analyses were performed for comparisons between eccentric and concentric training as means to improve muscle strength and mass. In order to determine the importance of different parameters of training, subgroup analyses of intensity of exercise, velocity of movement and mode of contraction were also performed. Twenty randomised controlled trials studies met the inclusion criteria. Meta-analyses showed that when eccentric exercise was performed at higher intensities compared with concentric training, total strength and eccentric strength increased more significantly. However, compared with concentric training, strength gains after eccentric training appeared more specific in terms of velocity and mode of contraction. Eccentric training performed at high intensities was shown to be more effective in promoting increases in muscle mass measured as muscle girth. In addition, eccentric training also showed a trend towards increased muscle cross-sectional area measured with magnetic resonance imaging or computerised tomography. Subgroup analyses suggest that the superiority of eccentric training to increase muscle strength and mass appears to be related to the higher loads developed during eccentric contractions. The specialised neural pattern of eccentric actions possibly explains the high specificity of strength gains after eccentric training. Further research is required to investigate the underlying mechanisms of this specificity and its functional significance in terms of transferability of strength gains to more complex human movements.
                Bookmark

                Author and article information

                Journal
                Sports Health
                Sports Health
                SPH
                spsph
                Sports Health
                SAGE Publications (Sage CA: Los Angeles, CA )
                1941-7381
                1941-0921
                1 June 2017
                Jul-Aug 2017
                1 June 2018
                : 9
                : 4
                : 333-340
                Affiliations
                []Department of Kinesiology, University of Connecticut, Storrs, Connecticut
                []School of Health and Rehabilitative Sciences, College of Medicine, The Ohio State University, Columbus, Ohio
                [§ ]Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, Ohio
                []Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio
                Author notes
                [*] [* ]Lindsey K. Lepley, PhD, ATC, Department of Kinesiology, University of Connecticut, 2095 Hillside Road, Unit 1110, Storrs, CT 06268 (email: lindsey.lepley@ 123456uconn.edu ).
                Article
                10.1177_1941738117710913
                10.1177/1941738117710913
                5496707
                28571492
                b4362d17-156e-47f3-b258-fd6abf346dfa
                © 2017 The Author(s)
                History
                Categories
                Focus Topic: Neural Function
                Custom metadata
                July/August 2017

                Sports medicine
                injury prevention,neuromuscular,eccentric exercise
                Sports medicine
                injury prevention, neuromuscular, eccentric exercise

                Comments

                Comment on this article