26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      OCT Biometry (B-OCT): A New Method for Measuring Ocular Axial Dimensions

      research-article
      1 , 2 , , 1 , 2
      Journal of Ophthalmology
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To present a new method of measuring ocular axial dimensions, termed OCT biometry (B-OCT).

          Design

          Observational cross-sectional study and evaluation of new diagnostic technology.

          Methods

          B-OCT was implemented in the spectral domain OCT device for posterior and anterior segment imaging (REVO NX, Optopol Technology). A total of 349 eyes (214 of healthy subjects, 115 of patients with cataract, and 20 with severe macular diseases) were enrolled in the study. The results of B-OCT were compared to swept source OCT-based IOLMaster 700 (Carl Zeiss Meditec). Differences in measurement values between the two biometers were determined using the paired t-test. Agreement was assessed through intraclass correlation coefficients (ICCs) and Bland–Altman plots.

          Results

          B-OCT obtained with REVO NX provides excellent interobserver reproducibility (ICC for: axial length (AXL) = 1.000; central corneal thickness (CCT) = 0.933; anterior chamber depth (ACD) = 0.933; lens thickness (LT) = 0.985) and intraobserver repeatability (ICC for: AXL = 1.000; CCT ≥ 0.994; ACD = 0.998; LT ≥ 0.993). The correlation between measurements made using both devices was outstanding (ICC for: AXL, healthy = 1.000; AXL, cataractous = 1.000; ACD, healthy = 0.998; ACD, cataractous = 0.997; LT, healthy = 0.998; LT, cataractous = 0.997; CCT, healthy = 0.989; CCT, cataractous = 0.979). The mean AXL measurement difference in healthy eyes was −0.001 ± 0.016 mm (the 95% LoA ranged from −0.034 to 0.031); mean ACD difference was 0.000 ± 0.024 mm (95% LoA, −0.047 to 0.047); mean LT difference was −0.002 ± 0.024 mm (95% LoA, −0.050 to 0.046); and mean CCT difference  was −0.8 ± 5.1  μm (95% LoA, −10.81 to 9.26). The mean AXL measurement difference in cataractous eyes was −0.003 ± 0.022 mm (95% LoA, −0.046 to 0.039); mean ACD difference was 0.003 ± 0.029 mm (95% LoA, −0.054 to 0.059); mean LT difference was −0.002 ± 0.025 (95% LoA, −0.051 to 0.048); and mean CCT difference was 2.7 ± 6.4  μm (95% LoA, −9.80 to 15.7).

          Conclusion

          The study shows small, nonsignificant differences between the biometric measurements obtained with REVO NX B-OCT and IOLMaster 700, which is of high significance for IOL power selection. As B-OCT utilizes a conventional OCT device, the measurements of the ocular axial dimensions are combined with high-resolution macular scans for the simultaneous assessment of central retina as a part of screening for macular pathology. The presented method is the first spectral domain OCT-based biometry technique and the only one integrated into a standard OCT device. Thus, it brings novel functionality to OCT technology.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: not found
          • Article: not found

          The Lens Opacities Classification System III

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Hoffer Q formula: a comparison of theoretic and regression formulas.

            A new formula, the Hoffer Q, was developed to predict the pseudophakic anterior chamber depth (ACD) for theoretic intraocular lens (IOL) power formulas. It relies on a personalized ACD, axial length, and corneal curvature. In 180 eyes, the Q formula proved more accurate than those using a constant ACD (P < .0001) and equal (P = .63) to those using the actual postoperative measured ACD (which is not possible clinically). In 450 eyes of one style IOL implanted by one surgeon, the Hoffer Q formula was equal to the Holladay (P = .65) and SRK/T (P = .63) and more accurate than the SRK (P < .0001) and SRK II (P = .004) regression formulas using optimized personalization constants. The Hoffer Q formula may be clinically more accurate than the Holladay and SRK/T formulas in eyes shorter than 22.0 mm. Even the original nonpersonalized constant ACD Hoffer formula compared with SRK I (using the most valid possible optimized personal A-constant) has a better mean absolute error (0.56 versus 0.59) and a significantly better range of IOL prediction error (3.44 diopters [D] versus 7.31 D). The range of error of the Hoffer Q formula (3.59 D) was half that of SRK I (7.31 D). The highest IOL power errors in the 450 eyes were in the SRK II (3.14 D) and SRK I (6.14 D); the power error was 2.08 D using the Hoffer Q formula. The series using overall personalized ACD was more accurate than using an axial length subgroup personalized ACD in each axial length subgroup. The results strongly support replacing regression formulas with third-generation personalized theoretic formulas and carefully evaluating the Holladay, SRK/T, and Hoffer Q formulas.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Statistics Notes: Measurement error

                Bookmark

                Author and article information

                Contributors
                Journal
                J Ophthalmol
                J Ophthalmol
                JOPH
                Journal of Ophthalmology
                Hindawi
                2090-004X
                2090-0058
                2019
                14 August 2019
                : 2019
                : 9192456
                Affiliations
                1Department of Ophthalmology, Nicolaus Copernicus University, 9 M. Sklodowskiej-Curie St., Bydgoszcz 85-309, Poland
                2Oculomedica Eye Center, 9 Broniewskiego St., Bydgoszcz 85-316, Poland
                Author notes

                Academic Editor: Antonio Queiros

                Author information
                https://orcid.org/0000-0001-5357-9560
                Article
                10.1155/2019/9192456
                6710804
                31511790
                b42803de-42f8-45c9-bbc9-c1b01d143aac
                Copyright © 2019 Bartosz L. Sikorski and Pawel Suchon.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 March 2019
                : 15 June 2019
                : 26 June 2019
                Categories
                Research Article

                Ophthalmology & Optometry
                Ophthalmology & Optometry

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content116

                Cited by11

                Most referenced authors219