2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Artificial Peptide-Based Bifunctional HIV-1 Entry Inhibitor That Interferes with Viral Glycoprotein-41 Six-Helix Bundle Formation and Antagonizes CCR5 on the Host Cell Membrane

      , , , , , , , , ,
      Viruses
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human immunodeficiency virus type 1 (HIV-1) is characterized by high variability and drug resistance. This has necessitated the development of antivirals with a new chemotype and therapy. We previously identified an artificial peptide with non-native protein sequence, AP3, with the potential to inhibit HIV-1 fusion through targeting hydrophobic grooves on the N-terminal heptad repeat trimer of viral glycoprotein gp41. Here, a small-molecule HIV-1 inhibitor targeting chemokine coreceptor CCR5 on the host cell was integrated into the AP3 peptide, producing a novel dual-target inhibitor with improved activity against multiple HIV-1 strains including those resistant to the currently used anti-HIV-1 drug enfuvirtide. Its superior antiviral potency in comparison with the respective pharmacophoric moieties is in consonance with the dual binding of viral gp41 and host factor CCR5. Therefore, our work provides a potent artificial peptide-based bifunctional HIV-1 entry inhibitor and highlights the multitarget-directed ligands approach in the development of novel therapeutic anti-HIV-1 agents.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Core structure of gp41 from the HIV envelope glycoprotein.

          The envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) consists of a complex of gp120 and gp41. gp120 determines viral tropism by binding to target-cell receptors, while gp41 mediates fusion between viral and cellular membranes. Previous studies identified an alpha-helical domain within gp41 composed of a trimer of two interacting peptides. The crystal structure of this complex, composed of the peptides N36 and C34, is a six-helical bundle. Three N36 helices form an interior, parallel coiled-coil trimer, while three C34 helices pack in an oblique, antiparallel manner into highly conserved, hydrophobic grooves on the surface of this trimer. This structure shows striking similarity to the low-pH-induced conformation of influenza hemagglutinin and likely represents the core of fusion-active gp41. Avenues for the design/discovery of small-molecule inhibitors of HIV infection are directly suggested by this structure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity.

            Maraviroc (UK-427,857) is a selective CCR5 antagonist with potent anti-human immunodeficiency virus type 1 (HIV-1) activity and favorable pharmacological properties. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Maraviroc demonstrated potent antiviral activity against all CCR5-tropic HIV-1 viruses tested, including 43 primary isolates from various clades and diverse geographic origin (geometric mean 90% inhibitory concentration of 2.0 nM). Maraviroc was active against 200 clinically derived HIV-1 envelope-recombinant pseudoviruses, 100 of which were derived from viruses resistant to existing drug classes. There was little difference in the sensitivity of the 200 viruses to maraviroc, as illustrated by the biological cutoff in this assay (= geometric mean plus two standard deviations [SD] of 1.7-fold). The mechanism of action of maraviroc was established using cell-based assays, where it blocked binding of viral envelope, gp120, to CCR5 to prevent the membrane fusion events necessary for viral entry. Maraviroc did not affect CCR5 cell surface levels or associated intracellular signaling, confirming it as a functional antagonist of CCR5. Maraviroc has no detectable in vitro cytotoxicity and is highly selective for CCR5, as confirmed against a wide range of receptors and enzymes, including the hERG ion channel (50% inhibitory concentration, >10 microM), indicating potential for an excellent clinical safety profile. Studies in preclinical in vitro and in vivo models predicted maraviroc to have human pharmacokinetics consistent with once- or twice-daily dosing following oral administration. Clinical trials are ongoing to further investigate the potential of using maraviroc for the treatment of HIV-1 infection and AIDS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex.

              The CCR5 chemokine receptor acts as a co-receptor for HIV-1 viral entry. Here we report the 2.7 angstrom-resolution crystal structure of human CCR5 bound to the marketed HIV drug maraviroc. The structure reveals a ligand-binding site that is distinct from the proposed major recognition sites for chemokines and the viral glycoprotein gp120, providing insights into the mechanism of allosteric inhibition of chemokine signaling and viral entry. A comparison between CCR5 and CXCR4 crystal structures, along with models of co-receptor-gp120-V3 complexes, suggests that different charge distributions and steric hindrances caused by residue substitutions may be major determinants of HIV-1 co-receptor selectivity. These high-resolution insights into CCR5 can enable structure-based drug discovery for the treatment of HIV-1 infection.
                Bookmark

                Author and article information

                Contributors
                Journal
                VIRUBR
                Viruses
                Viruses
                MDPI AG
                1999-4915
                May 2023
                April 23 2023
                : 15
                : 5
                : 1038
                Article
                10.3390/v15051038
                b415302c-cb01-4488-ac59-2ab4742f6560
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article