69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Restoration of Mecp2 expression in GABAergic neurons is sufficient to rescue multiple disease features in a mouse model of Rett syndrome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The postnatal neurodevelopmental disorder Rett syndrome, caused by mutations in MECP2, produces a diverse array of symptoms, including loss of language, motor, and social skills and the development of hand stereotypies, anxiety, tremor, ataxia, respiratory dysrhythmias, and seizures. Surprisingly, despite the diversity of these features, we have found that deleting Mecp2 only from GABAergic inhibitory neurons in mice replicates most of this phenotype. Here we show that genetically restoring Mecp2 expression only in GABAergic neurons of male Mecp2 null mice enhanced inhibitory signaling, extended lifespan, and rescued ataxia, apraxia, and social abnormalities but did not rescue tremor or anxiety. Female Mecp2 +/- mice showed a less dramatic but still substantial rescue. These findings highlight the critical regulatory role of GABAergic neurons in certain behaviors and suggest that modulating the excitatory/inhibitory balance through GABAergic neurons could prove a viable therapeutic option in Rett syndrome.

          DOI: http://dx.doi.org/10.7554/eLife.14198.001

          eLife digest

          Rett syndrome is a childhood brain disorder that mainly affects girls and causes symptoms including anxiety, tremors, uncoordinated movements and breathing difficulties. Rett syndrome is caused by mutations in a gene called MECP2, which is found on the X chromosome. Males with MECP2 mutations are rare but have more severe symptoms and die young. Many researchers who study Rett syndrome use mice as a model of the disorder. In particular, male mice with the mouse equivalent of the human MECP2 gene switched off in every cell in the body (also known as Mecp2-null mice) show many of the features of Rett syndrome and die at a young age.

          The MECP2 gene is important for healthy brain activity. The brain contains two major types of neurons: excitatory neurons, which encourage other neurons to be active; and inhibitory neurons, which stop or dampen the activity of other neurons. In 2010, researchers reported that mice lacking Mecp2 in only their inhibitory neurons develop most of the same problems as those mice with no Mecp2 at all. This discovery led Ure et al. – including a researcher involved in the 2010 study – to ask if activating Mecp2 in the same neurons in otherwise Mecp2-null mice was enough to prevent some of their Rett syndrome-like symptoms.

          The experiments showed that male mice that only have Mecp2 activated in their inhibitory neurons lived several months longer than male Mecp2-null mice. These male “rescue mice” also moved normally and had a normal body weight, though they still experienced anxiety, tremors and breathing difficulties. Female mice represent a better model of human Rett syndrome patients, and Ure et al. found that female rescue mice showed smaller improvements than the males.

          These data suggest that when a brain is missing Mecp2 everywhere, as in male Mecp2-null mice, turning on Mecp2 in inhibitory neurons can make the brain network nearly normal and prevent most Rett-syndrome-like symptoms. However, the brains of female rescue mice contain both normal cells and cells with mutated Mecp2. This mixture of normal and abnormal cells appears to cause abnormalities that cannot be overcome by rescuing just the activity of the inhibitory neurons. These findings also highlight the importance of doing future studies in female mice to better understand the development of Rett syndrome.

          The next challenge is to test different ways of activating the inhibitory neurons in the female mouse brain, for example by using drugs that target these neurons. It is hoped these methods will help researchers to refine a path toward potential new treatments for Rett syndrome patients. Finally, in a related study, Meng et al. asked how deleting or activating Mecp2 only in the excitatory neurons of mice affected Rett-syndrome-like symptoms.

          DOI: http://dx.doi.org/10.7554/eLife.14198.002

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2.

          Rett syndrome (RTT, MIM 312750) is a progressive neurodevelopmental disorder and one of the most common causes of mental retardation in females, with an incidence of 1 in 10,000-15,000 (ref. 2). Patients with classic RTT appear to develop normally until 6-18 months of age, then gradually lose speech and purposeful hand use, and develop microcephaly, seizures, autism, ataxia, intermittent hyperventilation and stereotypic hand movements. After initial regression, the condition stabilizes and patients usually survive into adulthood. As RTT occurs almost exclusively in females, it has been proposed that RTT is caused by an X-linked dominant mutation with lethality in hemizygous males. Previous exclusion mapping studies using RTT families mapped the locus to Xq28 (refs 6,9,10,11). Using a systematic gene screening approach, we have identified mutations in the gene (MECP2 ) encoding X-linked methyl-CpG-binding protein 2 (MeCP2) as the cause of some cases of RTT. MeCP2 selectively binds CpG dinucleotides in the mammalian genome and mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A (refs 12,13). In 5 of 21 sporadic patients, we found 3 de novo missense mutations in the region encoding the highly conserved methyl-binding domain (MBD) as well as a de novo frameshift and a de novo nonsense mutation, both of which disrupt the transcription repression domain (TRD). In two affected half-sisters of a RTT family, we found segregation of an additional missense mutation not detected in their obligate carrier mother. This suggests that the mother is a germline mosaic for this mutation. Our study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neocortical excitation/inhibition balance in information processing and social dysfunction.

            Severe behavioural deficits in psychiatric diseases such as autism and schizophrenia have been hypothesized to arise from elevations in the cellular balance of excitation and inhibition (E/I balance) within neural microcircuitry. This hypothesis could unify diverse streams of pathophysiological and genetic evidence, but has not been susceptible to direct testing. Here we design and use several novel optogenetic tools to causally investigate the cellular E/I balance hypothesis in freely moving mammals, and explore the associated circuit physiology. Elevation, but not reduction, of cellular E/I balance within the mouse medial prefrontal cortex was found to elicit a profound impairment in cellular information processing, associated with specific behavioural impairments and increased high-frequency power in the 30-80 Hz range, which have both been observed in clinical conditions in humans. Consistent with the E/I balance hypothesis, compensatory elevation of inhibitory cell excitability partially rescued social deficits caused by E/I balance elevation. These results provide support for the elevated cellular E/I balance hypothesis of severe neuropsychiatric disease-related symptoms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome.

              Rett syndrome (RTT) is an inherited neurodevelopmental disorder of females that occurs once in 10,000-15,000 births. Affected females develop normally for 6-18 months, but then lose voluntary movements, including speech and hand skills. Most RTT patients are heterozygous for mutations in the X-linked gene MECP2 (refs. 3-12), encoding a protein that binds to methylated sites in genomic DNA and facilitates gene silencing. Previous work with Mecp2-null embryonic stem cells indicated that MeCP2 is essential for mouse embryogenesis. Here we generate mice lacking Mecp2 using Cre-loxP technology. Both Mecp2-null mice and mice in which Mecp2 was deleted in brain showed severe neurological symptoms at approximately six weeks of age. Compensation for absence of MeCP2 in other tissues by MeCP1 (refs. 19,20) was not apparent in genetic or biochemical tests. After several months, heterozygous female mice also showed behavioral symptoms. The overlapping delay before symptom onset in humans and mice, despite their profoundly different rates of development, raises the possibility that stability of brain function, not brain development per se, is compromised by the absence of MeCP2.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                21 June 2016
                2016
                : 5
                : e14198
                Affiliations
                [1 ]deptDepartment of Molecular and Human Genetics , Baylor College of Medicine , Houston, United States
                [2 ]deptJan and Dan Duncan Neurological Research Institute , Texas Children's Hospital , Houston, United States
                [3 ]Howard Hughes Medical Institute, Baylor College of Medicine , Houston, United States
                [4 ]deptDepartment of Pediatrics , Baylor College of Medicine , Houston, United States
                [5 ]deptDepartment of Neuroscience , Baylor College of Medicine , Houston, United States
                [6 ]deptCain Foundation Laboratories , Baylor College of Medicine , Houston, United States
                [7]Howard Hughes Medical Institute, Harvard University , United States
                [8]Howard Hughes Medical Institute, Harvard University , United States
                Author notes
                [* ]For correspondence: hzoghbi@ 123456bcm.edu
                Author information
                http://orcid.org/0000-0002-0700-3349
                Article
                14198
                10.7554/eLife.14198
                4946897
                27328321
                b3e373b6-427a-4213-a6f6-5911bfd97c64
                © 2016, Ure et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 04 January 2016
                : 09 June 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000065, National Institute of Neurological Disorders and Stroke;
                Award ID: 1F32NS083137-01A1
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100007857, Intellectual and Developmental Disabilities Research Center;
                Award ID: U54 HD083092
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100007857, Intellectual and Developmental Disabilities Research Center;
                Award ID: 5P30HD024064-23
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000065, National Institute of Neurological Disorders and Stroke;
                Award ID: 5R01NS057819
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Neuroscience
                Research Article
                Custom metadata
                2.5
                Genetically restoring Mecp2 expression only in GABAergic neurons in a mouse model of Rett syndrome improves inhibitory signaling, extends lifespan and rescues most but not all behavioral deficits.

                Life sciences
                rett syndrome,gabaergic neurons,inhibition,mouse
                Life sciences
                rett syndrome, gabaergic neurons, inhibition, mouse

                Comments

                Comment on this article