Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Todesursachenstatistik – wie Fehlinterpretationen von Mortalitätsdaten vermieden werden Translated title: Cause of death statistics—how to avoid misinterpretation of mortality data

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nationale Mortalitätsregister sind eine wichtige Datenquelle für das Monitoring der Bevölkerungsgesundheit. Aus Analysen insbesondere der kardiovaskulären Mortalität und speziell der Mortalität an koronarer Herzkrankheit werden Rückschlüsse auf die Qualität der Gesundheitsversorgung und Prävention gezogen. Um krankheitsspezifische Mortalitätsunterschiede zwischen Ländern und Veränderungen über die Zeit interpretieren zu können, ist es jedoch notwendig, die Grundlagen der unikausalen Todesursachenstatistik und die damit verbundenen Einschränkungen bei vergleichenden Aussagen zu kennen.

          Schlussfolgerungen aus krankheitsspezifischen Mortalitätsdaten können wegen der sehr subjektiven Auswahl von Erkrankungen, die nach einer Leichenschau im Totenschein erfasst werden, problematisch sein. Unkenntnis der Leichenschauenden darüber, welche verschiedenen „Rollen“ einzelne, zum Zeitpunkt des Todes bekannte Erkrankungen innerhalb der zum Tode führenden Kausalkette einnehmen, kann zu unzureichend ausgefüllten Totenscheinen als Datengrundlage der Mortalitätsstatistik führen. Vergleiche krankheitsspezifischer Mortalitätsraten werden so durch verschiedene Anteile nichtinformativer, u. a. auch unbekannter Todesursachen und landesspezifische Präferenzen bei der Eintragung von Erkrankungen im Totenschein erschwert – insbesondere bei Multimorbidität. Die Morbidität einer Bevölkerung wird daher durch Mortalitätsraten nur eingeschränkt widergespiegelt. Begriffliche Unklarheiten in Bezug auf die Konzepte Letalität und Mortalität bei der Beschreibung von Mortalitätsraten können ebenfalls zu fehlerhaften Schlussfolgerungen führen.

          Schulungen des ärztlichen Personals zum Ausfüllen eines Totenscheins und die geplante elektronische Todesbescheinigung könnten die Datengrundlage verbessern. Unabhängig davon verbessert die Kenntnis möglicher Fallstricke bei der Nutzung von Mortalitätsdaten die Qualität der Gesundheitsberichterstattung.

          Translated abstract

          National mortality registers provide important data for monitoring population health. Analyses of cardiovascular mortality in particular—and especially mortality from coronary heart disease—are frequently the basis for conclusions about the quality of healthcare and prevention. To be able to interpret disease-specific mortality differences between countries and changes in mortality over time, it is necessary to know the basics of monocausal cause-of-death statistics and the associated limitations in comparative statements.

          Conclusions from disease-specific mortality data can be problematic due to the highly subjective selection of diseases that are entered on a death certificate after a post-mortem examination. In death certification, unawareness of the different “roles” of specific diseases—known at the time of death—within the causal chain leading to death can result in incomplete death certificates as a data basis for mortality statistics. Comparisons of disease-specific mortality rates are difficult due to different proportions of non-informative—including unknown—causes of death and due to country-specific preferences for which diseases are recorded on a death certificate—especially in the prevalence of multimorbidity. A population’s morbidity is therefore only reflected to a limited extent by mortality rates. Conceptual ambiguities with regard to the concepts of lethality and mortality when describing mortality rates can also lead to erroneous conclusions.

          Training of medical staff on how to complete a death certificate and the introduction of an electronic death certificate can improve the quality of mortality data. Irrespective of this, knowing potential pitfalls when analyzing mortality data will improve the quality of health reporting.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015

          Background The burden of cardiovascular diseases (CVDs) remains unclear in many regions of the world. Objectives The GBD (Global Burden of Disease) 2015 study integrated data on disease incidence, prevalence, and mortality to produce consistent, up-to-date estimates for cardiovascular burden. Methods CVD mortality was estimated from vital registration and verbal autopsy data. CVD prevalence was estimated using modeling software and data from health surveys, prospective cohorts, health system administrative data, and registries. Years lived with disability (YLD) were estimated by multiplying prevalence by disability weights. Years of life lost (YLL) were estimated by multiplying age-specific CVD deaths by a reference life expectancy. A sociodemographic index (SDI) was created for each location based on income per capita, educational attainment, and fertility. Results In 2015, there were an estimated 422.7 million cases of CVD (95% uncertainty interval: 415.53 to 427.87 million cases) and 17.92 million CVD deaths (95% uncertainty interval: 17.59 to 18.28 million CVD deaths). Declines in the age-standardized CVD death rate occurred between 1990 and 2015 in all high-income and some middle-income countries. Ischemic heart disease was the leading cause of CVD health lost globally, as well as in each world region, followed by stroke. As SDI increased beyond 0.25, the highest CVD mortality shifted from women to men. CVD mortality decreased sharply for both sexes in countries with an SDI >0.75. Conclusions CVDs remain a major cause of health loss for all regions of the world. Sociodemographic change over the past 25 years has been associated with dramatic declines in CVD in regions with very high SDI, but only a gradual decrease or no change in most regions. Future updates of the GBD study can be used to guide policymakers who are focused on reducing the overall burden of noncommunicable disease and achieving specific global health targets for CVD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Decline in Cardiovascular Mortality: Possible Causes and Implications.

            If the control of infectious diseases was the public health success story of the first half of the 20th century, then the decline in mortality from coronary heart disease and stroke has been the success story of the century's past 4 decades. The early phase of this decline in coronary heart disease and stroke was unexpected and controversial when first reported in the mid-1970s, having followed 60 years of gradual increase as the US population aged. However, in 1978, the participants in a conference convened by the National Heart, Lung, and Blood Institute concluded that a significant recent downtick in coronary heart disease and stroke mortality rates had definitely occurred, at least in the US Since 1978, a sharp decline in mortality rates from coronary heart disease and stroke has become unmistakable throughout the industrialized world, with age-adjusted mortality rates having declined to about one third of their 1960s baseline by 2000. Models have shown that this remarkable decline has been fueled by rapid progress in both prevention and treatment, including precipitous declines in cigarette smoking, improvements in hypertension treatment and control, widespread use of statins to lower circulating cholesterol levels, and the development and timely use of thrombolysis and stents in acute coronary syndrome to limit or prevent infarction. However, despite the huge growth in knowledge and advances in prevention and treatment, there remain many questions about this decline. In fact, there is evidence that the rate of decline may have abated and may even be showing early signs of reversal in some population groups. The National Heart, Lung, and Blood Institute, through a request for information, is soliciting input that could inform a follow-up conference on or near the 40th anniversary of the original landmark conference to further explore these trends in cardiovascular mortality in the context of what has come before and what may lie ahead.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Algorithms for enhancing public health utility of national causes-of-death data

              Background Coverage and quality of cause-of-death (CoD) data varies across countries and time. Valid, reliable, and comparable assessments of trends in causes of death from even the best systems are limited by three problems: a) changes in the International Statistical Classification of Diseases and Related Health Problems (ICD) over time; b) the use of tabulation lists where substantial detail on causes of death is lost; and c) many deaths assigned to causes that cannot or should not be considered underlying causes of death, often called garbage codes (GCs). The Global Burden of Disease Study and the World Health Organization have developed various methods to enhance comparability of CoD data. In this study, we attempt to build on these approaches to enhance the utility of national cause-of-death data for public health analysis. Methods Based on careful consideration of 4,434 country-years of CoD data from 145 countries from 1901 to 2008, encompassing 743 million deaths in ICD versions 1 to 10 as well as country-specific cause lists, we have developed a public health-oriented cause-of-death list. These 56 causes are organized hierarchically and encompass all deaths. Each cause has been mapped from ICD-6 to ICD-10 and, where possible, they have also been mapped to the International List of Causes of Death 1-5. We developed a typology of different classes of GCs. In each ICD revision, GCs have been identified. Target causes to which these GCs should be redistributed have been identified based on certification practice and/or pathophysiology. Proportionate redistribution, statistical models, and expert algorithms have been developed to redistribute GCs to target codes for each age-sex group. Results The fraction of all deaths assigned to GCs varies tremendously across countries and revisions of the ICD. In general, across all country-years of data available, GCs have declined from more than 43% in ICD-7 to 24% in ICD-10. In some regions, such as Australasia, GCs in 2005 are as low as 11%, while in some developing countries, such as Thailand, they are greater than 50%. Across different age groups, the composition of GCs varies tremendously - three classes of GCs steadily increase with age, but ambiguous codes within a particular disease chapter are also common for injuries at younger ages. The impact of redistribution is to change the number of deaths assigned to particular causes for a given age-sex group. These changes alter ranks across countries for any given year by a number of different causes, change time trends, and alter the rank order of causes within a country. Conclusions By mapping CoD through different ICD versions and redistributing GCs, we believe the public health utility of CoD data can be substantially enhanced, leading to an increased demand for higher quality CoD data from health sector decision-makers.
                Bookmark

                Author and article information

                Contributors
                susanne.stolpe@uk-essen.de
                Journal
                Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz
                Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz
                Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1436-9990
                1437-1588
                4 December 2024
                4 December 2024
                2025
                : 68
                : 2
                : 167-175
                Affiliations
                Institut für medizinische Informatik, Biometrie und Epidemiologie, Universitätsklinikum Essen, ( https://ror.org/02na8dn90) Hufelandstr. 55, 45147 Essen, Deutschland
                Article
                3986
                10.1007/s00103-024-03986-3
                11775058
                39630243
                b3de917a-346a-4415-beee-f4aa5cffac9f
                © The Author(s) 2024

                Open Access Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden.

                Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen.

                Weitere Details zur Lizenz entnehmen Sie bitte der Lizenzinformation auf http://creativecommons.org/licenses/by/4.0/deed.de.

                History
                : 10 June 2024
                : 28 October 2024
                Funding
                Funded by: Universitätsklinikum Essen (8912)
                Categories
                In der Diskussion
                Custom metadata
                © Robert Koch-Institut 2025

                unikausale todesursachenstatistik,grundleiden,validität vergleichender schlussfolgerungen aus mortalitätsdaten,nichtinformative todesursachen,letalität,unicausal cause-of-death statistic,underlying cause of death,validity of comparative conclusions from cause-of-death statistics,ill-defined causes of death,lethality

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content212

                Most referenced authors686