7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dynamical initial-state model for relativistic heavy-ion collisions

      ,
      Physical Review C
      American Physical Society (APS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Signatures of the Tricritical Point in QCD

          Several approaches to QCD with two massless quarks at finite temperature T and baryon chemical potential mu suggest the existence of a tricritical point on the boundary of the phase with spontaneously broken chiral symmetry. In QCD with massive quarks there is then a critical point at the end of a first order transition line. We discuss possible experimental signatures of this point, which provide information about its location and properties. We propose a combination of event-by-event observables, including suppressed fluctuations in T and mu and, simultaneously, enhanced fluctuations in the multiplicity of soft pions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Collective flow and viscosity in relativistic heavy-ion collisions

            Collective flow, its anisotropies and its event-to-event fluctuations in relativistic heavy-ion collisions, and the extraction of the specific shear viscosity of quark-gluon plasma (QGP) from collective flow data collected in heavy-ion collision experiments at RHIC and LHC are reviewed. Specific emphasis is placed on the similarities between the Big Bang of our universe and the Little Bangs created in heavy-ion collisions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Glauber Modeling in High Energy Nuclear Collisions

              This is a review of the theoretical background, experimental techniques, and phenomenology of what is called the "Glauber Model" in relativistic heavy ion physics. This model is used to calculate "geometric" quantities, which are typically expressed as impact parameter (b), number of participating nucleons (N_part) and number of binary nucleon-nucleon collisions (N_coll). A brief history of the original Glauber model is presented, with emphasis on its development into the purely classical, geometric picture that is used for present-day data analyses. Distinctions are made between the "optical limit" and Monte Carlo approaches, which are often used interchangably but have some essential differences in particular contexts. The methods used by the four RHIC experiments are compared and contrasted, although the end results are reassuringly similar for the various geometric observables. Finally, several important RHIC measurements are highlighted that rely on geometric quantities, estimated from Glauber calculations, to draw insight from experimental observables. The status and future of Glauber modeling in the next generation of heavy ion physics studies is briefly discussed.
                Bookmark

                Author and article information

                Journal
                PRVCAN
                Physical Review C
                Phys. Rev. C
                American Physical Society (APS)
                2469-9985
                2469-9993
                February 2018
                February 15 2018
                : 97
                : 2
                Article
                10.1103/PhysRevC.97.024907
                b3b1ad35-45f4-4a82-8729-bb66cbadc7cf
                © 2018

                https://link.aps.org/licenses/aps-default-license

                https://link.aps.org/licenses/aps-default-accepted-manuscript-license

                History

                Comments

                Comment on this article