23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      When do plant radiations influence community assembly? The importance of historical contingency in the race for niche space

      , , , , ,
      New Phytologist
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography.

          A latitudinal gradient in biodiversity has existed since before the time of the dinosaurs, yet how and why this gradient arose remains unresolved. Here we review two major hypotheses for the origin of the latitudinal diversity gradient. The time and area hypothesis holds that tropical climates are older and historically larger, allowing more opportunity for diversification. This hypothesis is supported by observations that temperate taxa are often younger than, and nested within, tropical taxa, and that diversity is positively correlated with the age and area of geographical regions. The diversification rate hypothesis holds that tropical regions diversify faster due to higher rates of speciation (caused by increased opportunities for the evolution of reproductive isolation, or faster molecular evolution, or the increased importance of biotic interactions), or due to lower extinction rates. There is phylogenetic evidence for higher rates of diversification in tropical clades, and palaeontological data demonstrate higher rates of origination for tropical taxa, but mixed evidence for latitudinal differences in extinction rates. Studies of latitudinal variation in incipient speciation also suggest faster speciation in the tropics. Distinguishing the roles of history, speciation and extinction in the origin of the latitudinal gradient represents a major challenge to future research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Opposing effects of competitive exclusion on the phylogenetic structure of communities.

            Though many processes are involved in determining which species coexist and assemble into communities, competition is among the best studied. One hypothesis about competition's contribution to community assembly is that more closely related species are less likely to coexist. Though empirical evidence for this hypothesis is mixed, it remains a common assumption in certain phylogenetic approaches for inferring the effects of environmental filtering and competitive exclusion. Here, we relate modern coexistence theory to phylogenetic community assembly approaches to refine expectations for how species relatedness influences the outcome of competition. We argue that two types of species differences determine competitive exclusion with opposing effects on relatedness patterns. Importantly, this means that competition can sometimes eliminate more different and less related taxa, even when the traits underlying the relevant species differences are phylogenetically conserved. Our argument leads to a reinterpretation of the assembly processes inferred from community phylogenetic structure.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution

                Bookmark

                Author and article information

                Journal
                New Phytologist
                New Phytol
                Wiley-Blackwell
                0028646X
                July 2015
                July 2015
                : 207
                : 2
                : 468-479
                Article
                10.1111/nph.13362
                b39f3e71-18c1-4058-949f-51fbbc22a377
                © 2015
                History

                Comments

                Comment on this article