9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evolution of Rifampin Resistance in Escherichia coli and Mycobacterium smegmatis Due to Substandard Drugs

      ,
      Antimicrobial Agents and Chemotherapy
      American Society for Microbiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Poor-quality medicines undermine the treatment of infectious diseases, such as tuberculosis, which require months of treatment with rifampin and other drugs. Rifampin resistance is a critical concern for tuberculosis treatment. While subtherapeutic doses of medicine are known to select for antibiotic resistance, the effect of drug degradation products on the evolution of resistance is unknown. Here, we demonstrate that substandard drugs that contain degraded active pharmaceutical ingredients select for gene alterations that confer resistance to standard drugs. We generated drug-resistant Escherichia coli and Mycobacterium smegmatis strains by serially culturing bacteria in the presence of the rifampin degradation product rifampin quinone. We conducted Sanger sequencing to identify mutations in rifampin-resistant populations. Strains resistant to rifampin quinone developed cross-resistance to the standard drug rifampin, with some populations showing no growth inhibition at maximum concentrations of rifampin. Sequencing of the rifampin quinone-treated strains indicated that they acquired mutations in the DNA-dependent RNA polymerase B subunit. These mutations were localized in the rifampin resistance-determining region (RRDR), consistent with other reports of rifampin-resistant E. coli and mycobacteria. Rifampin quinone-treated mycobacteria also had cross-resistance to other rifamycin class drugs, including rifabutin and rifapentine. Our results strongly suggest that substandard drugs not only hinder individual patient outcomes but also restrict future treatment options by actively contributing to the development of resistance to standard medicines.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa.

          Poor-quality antimalarial drugs lead to drug resistance and inadequate treatment, which pose an urgent threat to vulnerable populations and jeopardise progress and investments in combating malaria. Emergence of artemisinin resistance or tolerance in Plasmodium falciparum on the Thailand-Cambodia border makes protection of the effectiveness of the drug supply imperative. We reviewed published and unpublished studies reporting chemical analyses and assessments of packaging of antimalarial drugs. Of 1437 samples of drugs in five classes from seven countries in southeast Asia, 497 (35%) failed chemical analysis, 423 (46%) of 919 failed packaging analysis, and 450 (36%) of 1260 were classified as falsified. In 21 surveys of drugs from six classes from 21 countries in sub-Saharan Africa, 796 (35%) of 2297 failed chemical analysis, 28 (36%) of 77 failed packaging analysis, and 79 (20%) of 389 were classified as falsified. Data were insufficient to identify the frequency of substandard (products resulting from poor manufacturing) antimalarial drugs, and packaging analysis data were scarce. Concurrent interventions and a multifaceted approach are needed to define and eliminate criminal production, distribution, and poor manufacturing of antimalarial drugs. Empowering of national medicine regulatory authorities to protect the global drug supply is more important than ever. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance.

            Rifampicin is an antibiotic that inhibits the function of RNA polymerase in eubacteria. Mutations affecting the beta subunit of RNA polymerase can confer resistance to rifampicin. A large number of rifampicin-resistant (hereafter called Rifr) mutants have been isolated in Escherichia coli to probe the involvement of RNA polymerase in a variety of physiological processes. We have undertaken a comprehensive analysis of Rifr mutations to identify their structural and functional effects on RNA polymerase. Forty-two Rifr isolates with a variety of phenotypes were mapped to defined intervals within the rpoB gene using a set of deletions of the rpoB gene. The mutations were sequenced. Seventeen mutational alterations affecting 14 amino acid residues were identified. These alleles are located in three distinct clusters in the center of the rpoB gene. We discuss the implications of our results with regards to the structure of the rifampicin binding site.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Strength of Selection Pressure Is an Important Parameter Contributing to the Complexity of Antibiotic Resistance Evolution

              Revealing the genetic changes responsible for antibiotic resistance can be critical for developing novel antibiotic therapies. However, systematic studies correlating genotype to phenotype in the context of antibiotic resistance have been missing. In order to fill in this gap, we evolved 88 isogenic Escherichia coli populations against 22 antibiotics for 3 weeks. For every drug, two populations were evolved under strong selection and two populations were evolved under mild selection. By quantifying evolved populations’ resistances against all 22 drugs, we constructed two separate cross-resistance networks for strongly and mildly selected populations. Subsequently, we sequenced representative colonies isolated from evolved populations for revealing the genetic basis for novel phenotypes. Bacterial populations that evolved resistance against antibiotics under strong selection acquired high levels of cross-resistance against several antibiotics, whereas other bacterial populations evolved under milder selection acquired relatively weaker cross-resistance. In addition, we found that strongly selected strains against aminoglycosides became more susceptible to five other drug classes compared with their wild-type ancestor as a result of a point mutation on TrkH, an ion transporter protein. Our findings suggest that selection strength is an important parameter contributing to the complexity of antibiotic resistance problem and use of high doses of antibiotics to clear infections has the potential to promote increase of cross-resistance in clinics.
                Bookmark

                Author and article information

                Journal
                Antimicrobial Agents and Chemotherapy
                Antimicrob Agents Chemother
                American Society for Microbiology
                0066-4804
                1098-6596
                January 2019
                December 21 2018
                November 05 2018
                : 63
                : 1
                Article
                10.1128/AAC.01243-18
                6325213
                30397062
                b39eb06f-36cb-449c-ba06-5065388dd154
                © 2018
                History

                Comments

                Comment on this article