39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A New Method for Isolating Host-Independent Variants of Bdellovibrio bacteriovorus Using E. coli Auxotrophs

      research-article
      , *
      The Open Microbiology Journal
      Bentham Open
      Bdellovibrio bacteriovorus, host-independent, isolation.

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bdellovibrios are Gram-negative bacteria that are characterized by predatory behavior. Although Bdellovibrios exhibit an obligatory parasitic life cycle, it is possible to isolate Bdellovibrio variants that no longer require host cells for their growth. In this study, a new method for isolating Bdellovibrio bacteriovorus host-independent (HI) variants was developed. Filtered B. bacteriovorus prey cells were cultured with E. coli diaminopimelic acid (DAP) auxotrophs as host cells. Thereafter, the lysate was plated on DAP minus media, allowing only HI colonies to develop. Using this method, we have isolated numerous HI variants and demonstrated that the emergence of HI variants may be occurring at a higher frequency than was previously suggested.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic identification of a respiratory arsenate reductase.

          For more than a decade, it has been recognized that arsenate [H2AsO41-; As(V)] can be used by microorganisms as a terminal electron acceptor in anaerobic respiration. Given the toxicity of arsenic, the mechanistic basis of this process is intriguing, as is its evolutionary origin. Here we show that a two-gene cluster (arrAB; arsenate respiratory reduction) in the bacterium Shewanella sp. strain ANA-3 specifically confers respiratory As(V) reductase activity. Mutants with in-frame deletions of either arrA or arrB are incapable of growing on As(V), yet both are able to grow on a wide variety of other electron acceptors as efficiently as the wild-type. Complementation by the wild-type sequence rescues the mutants' ability to respire As(V). arrA is predicted to encode a 95.2-kDa protein with sequence motifs similar to the molybdenum containing enzymes of the dimethyl sulfoxide reductase family. arrB is predicted to encode a 25.7-kDa iron-sulfur protein. arrA and arrB comprise an operon that contains a twin arginine translocation (Tat) motif in ArrA (but not in ArrB) as well as a putative anaerobic transcription factor binding site upstream of arrA, suggesting that the respiratory As(V) reductase is exported to the periplasm via the Tat pathway and under anaerobic transcriptional control. These genes appear to define a new class of reductases that are specific for respiratory As(V) reduction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Predation by Bdellovibrio bacteriovorus HD100 requires type IV pili.

            Early electron microscopy and more recent studies in our laboratory of Bdellovibrio bacteriovorus cells indicated the presence of narrow fibers at the nonflagellar pole of this unusual predatory bacterium. Analysis of the B. bacteriovorus HD100 genome showed a complete set of genes potentially encoding type IV pili and an incomplete gene set for Flp pili; therefore, the role of type IV pili in the predatory life cycle of B. bacteriovorus HD100 was investigated. Alignment of the predicted PilA protein with known type IV pilins showed the characteristic conserved N terminus common to type IVa pilins. The pilA gene, encoding the type IV pilus fiber protein, was insertionally inactivated in multiple Bdellovibrio replicate cultures, and the effect upon the expression of other pilus genes was monitored by reverse transcriptase PCR. Interruption of pilA in replicate isolates abolished Bdellovibrio predatory capability in liquid prey cultures and on immobilized yellow fluorescent protein-labeled prey, but the mutants could be cultured prey independently. Expression patterns of pil genes involved in the formation of type IV pili were profiled across the predatory life cycle from attack phase predatory Bdellovibrio throughout the intraperiplasmic bdelloplast stages to prey lysis and in prey-independent growth. Taken together, the data show that type IV pili play a critical role in Bdellovibrio predation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Maintenance of broad-host-range incompatibility group P and group Q plasmids and transposition of Tn5 in Bartonella henselae following conjugal plasmid transfer from Escherichia coli.

              The first demonstration of conjugal plasmid transfer from Escherichia coli to Bartonella henselae is reported. Transconjugants bearing plasmids of incompatibility groups P (IncP) and Q (IncQ), expressing various resistance markers, were generated. Tn5 transposons delivered on suicide plasmids by conjugation showed transpositional insertion into random chromosomal sites.
                Bookmark

                Author and article information

                Journal
                Open Microbiol J
                TOMICROJ
                The Open Microbiology Journal
                Bentham Open
                1874-2858
                2 June 2009
                2009
                : 3
                : 87-91
                Affiliations
                []Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, NJ, 07101, USA
                Author notes
                [* ]Address correspondence to this author at the Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, NJ, 07101, USA; Tel: 973-972-7401; Fax: 973-972-0045; E-mail: Kadourde@ 123456umdnj.edu
                Article
                TOMICROJ-3-87
                10.2174/1874285800903000087
                2705846
                19590595
                b3926798-ea13-4ae3-8cc6-cf22b551950c
                © Dashiff and Kadouri; Licensee Bentham Open.

                This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 5 May 2009
                : 13 May 2009
                : 15 May 2009
                Categories
                Article

                Microbiology & Virology
                bdellovibrio bacteriovorus,host-independent,isolation.
                Microbiology & Virology
                bdellovibrio bacteriovorus, host-independent, isolation.

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content388

                Cited by6

                Most referenced authors35