20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Increasing Concentrations of Sodium Sulfite on Deoxynivalenol and Deoxynivalenol Sulfonate Concentrations of Maize Kernels and Maize Meal Preserved at Various Moisture Content

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Under moderate climatic conditions, deoxynivalenol (DON) contamination occurs frequently on cereals. Detoxification measures are required to avoid adverse effects on farm animals. In the present study, a wet preservation method with sodium sulfite (Na 2SO 3) and propionic acid was tested to titrate the optimum Na 2SO 3-dose for maximum DON reduction of contaminated maize kernels and meal and to examine the interaction between dose and moisture content in dependence on the preservation duration. The DON concentration decreased with increasing amounts of supplemented Na 2SO 3 and with increasing duration of the preservation period in a bi-exponential fashion. Additionally, the feed structure and moisture content had a significant influence on the decontaminating effect. Variants with 30% moisture content favored higher DON reduction rates compared to 14% moisture, but especially at low moisture contents, DON reduction was more pronounced in maize kernels than in maize meal. In addition to the decrease of DON, a concomitant formation of three different DON sulfonates was observed which differed in their formation pattern over the time course of preservation. The overall results and statistical analysis clarified that Na 2SO 3 addition of 10 g/kg maize at 30% moisture for eight days was necessary to obtain a complete DON reduction.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Toxicology of deoxynivalenol (vomitoxin).

          Trichothecene mycotoxins are a group of structurally similar fungal metabolites that are capable of producing a wide range of toxic effects. Deoxynivalenol (DON, vomitoxin), a trichothecene, is prevalent worldwide in crops used for food and feed production, including in Canada and the United States. Although DON is one of the least acutely toxic trichothecenes, it should be treated as an important food safety issue because it is a very common contaminant of grain. This review focuses on the ability of DON to induce toxicologic and immunotoxic effects in a variety of cell systems and animal species. At the cellular level, the main toxic effect is inhibition of protein synthesis via binding to the ribosome. In animals, moderate to low ingestion of toxin can cause a number of as yet poorly defined effects associated with reduced performance and immune function. The main overt effect at low dietary concentrations appears to be a reduction in food consumption (anorexia), while higher doses induce vomiting (emesis). DON is known to alter brain neurochemicals. The serotoninergic system appears to play a role in mediation of the feeding behavior and emetic response. Animals fed low to moderate doses are able to recover from initial weight losses, while higher doses induce more long-term changes in feeding behavior. At low dosages of DON, hematological, clinical, and immunological changes are also transitory and decrease as compensatory/adaptation mechanisms are established. Swine are more sensitive to DON than mice, poultry, and ruminants, in part because of differences in metabolism of DON, with males being more sensitive than females. The capacity of DON to alter normal immune function has been of particular interest. There is extensive evidence that DON can be immunosuppressive or immunostimulatory, depending upon the dose and duration of exposure. While immunosuppression can be explained by the inhibition of translation, immunostimulation can be related to interference with normal regulatory mechanisms. In vivo, DON suppresses normal immune response to pathogens and simultaneously induces autoimmune-like effects which are similar to human immunoglobulin A (IgA) nephropathy. Other effects include superinduction of cytokine production by T helper cells (in vitro) and activation of macrophages and T cells to produce a proinflammatory cytokine wave that is analogous to that found in lipopolysaccharide-induced shock (in vivo). To what extent the elevation of cytokines contributes to metabolic effects such as decreased feed intake remains to be established. Although these effects have been largely characterized in the mouse, several investigations with DON suggest that immunotoxic effects are also likely in domestic animals. Further toxicology studies and an assessment of the potential of DON to be an etiologic agent in human disease are warranted.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Studies on the toxicity of deoxynivalenol (DON), sodium metabisulfite, DON-sulfonate (DONS) and de-epoxy-DON for porcine peripheral blood mononuclear cells and the Intestinal Porcine Epithelial Cell lines IPEC-1 and IPEC-J2, and on effects of DON and DONS on piglets.

            The in vitro effects of deoxynivalenol (DON), de-epoxy-DON, DON-sulfonate (DONS) and sodium metabisulfite (Na(2)S(2)O(5), SBS) on porcine peripheral blood mononuclear cells (PBMC), and on the Intestinal Porcine Epithelial Cell lines IPEC-1 and IPEC-J2 were examined by using the MTT assay. In addition, an uncontaminated and a DON contaminated triticale were included in diets either untreated (CON, FUS) or SBS treated (CON-SBS, FUS-SBS) and fed to piglets for 28 d starting from weaning. The diet concentrations of DON and DONS amounted to 0.156, 2.312, 0.084 and 0.275 mg and to<0.05, <0.05, <0.05 and 1.841 mg/kg, respectively. PBMC of the so-exposed piglets were also subjected to the MTT assay. Neither DONS and SBS nor de-epoxy-DON affected the viability of PBMC, IPEC-1 and IPEC-J2 significantly up to concentrations of 17, 8 and 23 microM, respectively. For DON, IC(50) values were estimated at 1.2+/-0.1, 1.3+/-0.5 and 3.0+/-0.8 microM for PBMC, IPEC-1 and IPEC-J2, respectively. PBMC from piglets fed the SBS treated diets were characterized by a significantly decreased stimulation index and an increased IgA supernatant concentration with the SBS effect being significantly more pronounced after feeding the FUS-SBS diet. Further studies should clarify the possible impact of SBS on the porcine immune system. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fusarium species complex and mycotoxins in grain maize from maize hybrid trials and from grower's fields.

              To quantify and to compare the occurrence of Fusarium species in maize kernels and stalk pieces, to analyse mycotoxins in kernels and maize crop residues, to evaluate two approaches to obtain kernel samples and to compare two methods for mycotoxin analyses. The occurrence of Fusarium species in maize kernels and stalk pieces from a three-year maize hybrid trial and 12 kernel samples from grower's fields was assessed. Nine to 16 different Fusarium species were detected in maize kernels and stalks. In kernels, F. graminearum, F. verticillioides and F. proliferatum were the most prevalent species whereas in stalks, they were F. equiseti, F. proliferatum and F. verticillioides. In 2006, 68% of the kernel samples exceeded the recommended limit for pig feed for deoxynivalenol (DON) and 42% for zearalenone (ZON), respectively. Similarly, 75% of the samples from grower's fields exceeded the limits for DON and 50% for ZON. In maize crop residues, toxin concentrations ranged from 2.6 to 15.3 mg kg(-1) for DON and from 0.7 to 7.4 mg kg(-1) for ZON. Both approaches to obtain maize kernel samples were valid, and a strong correlation between mycotoxin analysis using ELISA and LC-MS/MS was found. The contamination of maize kernels, stalk pieces and remaining crop residues with various mycotoxins could pose a risk not only to animal health but also to the environment. With the hand-picked sample, the entire Fusarium complex can be estimated, whereas combine harvested samples are more representative for the mycotoxin contents in harvested goods. This is the first multi-year study investigating mycotoxin contamination in maize kernels as well as in crop residues. The results indicate a high need to identify cropping factors influencing the infection of maize by Fusarium species to establish recommendations for growers. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                09 March 2015
                March 2015
                : 7
                : 3
                : 791-811
                Affiliations
                [1 ]Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany; E-Mails: marleen.paulick@ 123456fli.bund.de (M.P.); inga.rempe@ 123456gmx.de (I.R.); susanne.kersten@ 123456fli.bund.de (S.K.)
                [2 ]Biomin Holding GmbH, Biomin Research Center, Technopark 1, 3430 Tulln, Austria; E-Mail: dian.schatzmayr@ 123456biomin.net
                [3 ]Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria; E-Mail: heidi.schwartz@ 123456biomin.net
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: sven.daenicke@ 123456fli.bund.de ; Tel.: +49-531-5804-4101; Fax: +49-531-5804-4299.
                Article
                toxins-07-00791
                10.3390/toxins7030791
                4379525
                25760079
                b37baf22-a8d7-49ad-bd48-b8fa6e533865
                © 2015 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 January 2015
                : 28 February 2015
                Categories
                Article

                Molecular medicine
                decontamination,deoxynivalenol,deoxynivalenol sulfonates,sodium sulfite,wet preservation,maize

                Comments

                Comment on this article

                scite_
                19
                2
                20
                0
                Smart Citations
                19
                2
                20
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content214

                Cited by10

                Most referenced authors122